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“We […] thought that the cross-section of expected returns came from the CAPM. Now we have 

a zoo of new factors” Cochrane (2011). 

 

1. Introduction 

Treynor (1962), Sharpe (1964), Lintner (1965), and Mossin (1966) developed the Capital Asset 

Pricing Model (CAPM), which predicts that the single market factor drives the co-movement in 

asset returns.  Later, the Intertemporal CAPM of Merton (1972) and the Arbitrage Pricing 

Theory (APT) of Ross (1976) suggest that investors may make their investment decisions 

considering multiple risk sources, providing the foundations for multifactor asset pricing models.  

With the advent of these two theories, many variables have been proposed as proxies for the true 

common risk factors that drive the co-movement in asset returns.  We refer to these variables as 

empirical factors.  Some examples are the three factors of Fama and French (1993) and the five 

macroeconomic factors of Chen, Roll, and Ross (1986).  Harvey, Liu and Zhu (2013) categorize 

314 empirical factors from 311 different published papers since 1967 in top tier finance journals 

and current working papers.  Many of the proposed multifactor models seem to explain the cross-

section of returns better than the CAPM.  However, with the richness of empirical factors, some 

important questions need to be addressed.  Three of these questions are: i) are these empirical 

factors capturing different common risk factors?; ii) how many common risk factors are 

correlated with the proposed empirical factors? and iii) which empirical factors are really 

important? This paper attempts to answer these questions. 

For this purpose, we estimate the ranks of the beta matrices corresponding to a variety of 

linear factor models.  The rank of the beta matrix corresponding to a set of empirical factors 

equals the number of true latent factors that are correlated with the empirical factors.  A recent 

study by Lewellen, Nagel, and Shanken (2010) suggests that the relevance of an asset pricing 

model can be better tested by analyzing a large number of asset returns.  Following their 

suggestion, we analyze large numbers of portfolio and individual stock returns over different 

time periods.  A novelty of our paper is that we develop a new rank estimator that can be applied 

to a large number of cross-sectional observations.  Many methods are available to estimate the 

rank of a matrix.  Examples are the methods proposed by Zhou (1995); Cragg and Donald 

(1997); Robin and Smith (2000); and Kleibergen and Paap (2006).  These methods are designed 

for data with a relatively small number of risky assets (N) and a large number of time series 

observations (T).  In this paper, we use a new estimator that we refer to as “Modified Bayesian 
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Information Criterion” (MBIC) estimator.  The estimator is a modified version of the Bayesian 

Information Criterion (BIC) estimator developed by Cragg and Donald (1997).  We show that 

the modified estimator is consistent for any data set with large T whatever the size of N is.  Our 

simulation results also show that the estimator is quite accurate.  

The rank of a beta matrix corresponding to a set of empirical factors is not necessarily 

equal to the total number of true latent (unobservable) factors.  Instead, the beta rank equals the 

number of linearly independent latent factors that are correlated with the empirical factors.  For 

example, if a beta matrix corresponding to five empirical factors is found to have a rank of two, 

then only two latent factors are correlated with the five empirical factors.  The total number of 

true latent factors can be greater than two if some latent factors are not correlated with the 

empirical factors at all.  Thus, the total number of true latent factors cannot be directly estimated 

from an estimated beta matrix generated by a set of empirical factors.  However, the estimated 

rank of a beta matrix can be viewed as a lower bound for the total number of latent factors.   

Estimating the rank of a beta matrix is also necessary for the two-pass estimation method 

of Fama and MacBeth (1973), which has been widely used to estimate the risk premiums of 

individual empirical factors.  The consistency of the two-pass estimator requires that the true (but 

unobservable) beta matrix, corresponding to the empirical factors used, has full column rank.  

The estimated beta matrix can have full column rank even if the true beta matrix itself does not.  

As Kan and Zhang (1999a) and Burnside (2010) have shown, when the true beta matrix fails to 

have full column rank, the two-pass estimators of risk premiums are not normally distributed 

(not even asymptotically) and the corresponding t-tests are unreliable.  Thus, it is important to 

test whether the true beta matrix has full column rank. 

Some special cases have been discussed in the literature in which beta matrices fail to 

have full column rank. Kan and Zhang (1999a, 1999b) considered a case in which betas 

corresponding to an empirical factor all equal zeros.  They named such an empirical factor as a 

“useless” factor.  This case arises if the empirical factor is not correlated with any of the true 

latent factors.  For the studies using a large number of empirical factors, it is quite possible that 

some of them may be “useless.”  Burnside (2010) studied a case in which betas are the same for 

all individual assets.  His empirical study provided evidence that the betas for some asset pricing 

models are cross-sectionally constant.  Ahn, Perez and Gadarowski (APG, 2013) provided 

further evidence for such betas.  Using different sample periods, they estimated the beta matrices 

of 25 or 10 portfolios using the three factors of Fama and French (1993).  They found that the 

estimated market betas (corresponding to the CRSP value-weighted stock portfolio returns) often 
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have very limited cross-sectional variations. Given the problems created by using the two-pass 

estimator in the presence of useless factors, multicollinearity among different betas, or cross-

sectionally constant betas, APG proposed using two pre-diagnostic statistics to measure levels of 

multicollinearity and invariance of betas.  However, it is important to note that the APG statistics 

are not designed to estimate the rank of the beta matrix, a necessary condition for the 

identification of the estimated risk premiums when using the two-pass estimation method.    

In our empirical analysis, we apply our rank estimation method to the monthly and 

quarterly returns of the U.S. stock portfolios and individual stocks over several different time 

periods during 1952 to 2011.  We consider twenty-six empirical factors proposed by previous 

studies.  We analyze both monthly and quarterly returns using the three factors of Fama and 

French (1993, FF); the five factors of Chen, Roll, and Ross (1986, CRR); the three factor-model 

of Jagannathan and Wang (1996, JW); the three liquidity-related factors of Pastor and 

Stambaugh (2003, LIQ); plus the momentum (MOM) factor and the two return reversal (REV) 

factors (short-term and long-term).  For quarterly returns, we also consider the macroeconomic 

factors used by six additional asset pricing models: the consumption CAPM and the models of 

Lettau and Ludvigson (2001); Lustig and Van Nieuwerburgh (2004); Li, Vassalou, and Xing 

(2006); Yogo (2006); and Santos and Veronesi (2006). 

Our main results from actual return data are summarized as follows.  First, for both 

monthly and quarterly portfolio returns, our estimation results provide strong evidence that the 

beta matrix corresponding to the FF model has full column rank for portfolio returns.  That is, 

the three FF empirical factors appear to be correlated with three linearly independent latent risk 

factors.  In contrast, for monthly and quarterly individual returns, the FF beta matrices have 

ranks of two or three.  Most of the other multi-factor models we consider fail to produce beta 

matrices of full column rank for both portfolio and individual stock returns.  Second, adding a 

single non-FF factor other than the MOM factor to the FF model does not increase the rank of 

the beta matrix; the MOM factor often increases the rank of the beta matrix for monthly portfolio 

returns, but not for quarterly portfolio returns or monthly and quarterly individual stock returns.  

These results indicate that researchers should be very careful when they test whether an 

additional non-FF factor is priced or not by the Fama-MacBeth two-pass estimation, because the 

beta matrix may fail to have full column rank.  Third and finally, adding to the FF model all of 

the non-FF empirical factors increases the rank of the beta matrix at most by two.  

Our empirical study is related to some previous studies that test correlations between true 

latent and empirical factors.  For example, Bai and Ng (2006) estimated the latent factors by 
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principal components and then test whether some empirical factors are the same as the latent 

factors.  They found that the FF factors approximate the latent factors estimated from portfolio 

and individual stock returns much better than the CRR factors do.  Kan, Robotti and Shanken 

(2013) compared performances of different factor models using a test based on the distribution of 

the cross-sectional R-square from the two-pass estimation.  However, the goal of our study is 

different from those of these studies.  Our goal is not to identify the empirical factors that are 

most highly correlated with true factors, nor to find the best performing asset pricing model.  For 

a model, the rank of the beta matrix is determined by the number of the latent factors correlated 

with the empirical factors used in the model.  High correlations and low correlations are not 

distinguished.  Thus, by estimating the ranks of beta matrices from a variety of asset pricing 

models, we aim to check whether the empirical factors used in different asset pricing models 

proxy for different latent factors (risk sources) and how many latent factors in return data can be 

captured by all of the different empirical factors. 

The rest of this paper is organized as follows. Section 2 introduces the factor model we 

investigate and the MBIC estimator.  It is shown that the estimator is a consistent estimator when 

the number of time series observations (T) is large while the number of asset returns (N) could be 

small or large.  The link between the estimator and the BIC estimator of Cragg and Donald 

(1997) is also discussed.  Section 3 reports our Monte Carlo simulation results and Section 4, our 

estimation results from actual return data.  Some concluding remarks follow in Section 5.  All of 

the proofs of our theoretical results are given in the Appendix. 

 

2.  Model and Rank Estimation 

2.1. Model and MBIC Estimator 

We begin with the approximate factor model that was considered by Chamberlain and 

Rothschild (1983).  Let itx  be the response variable for the thi cross-section unit at time t , where 

i = 1, 2, ... , N, and t = 1, 2, ... , T.  Explicitly, itx  can be the (excess) return on asset i  at time t .  

The response variables itx  depend on the J latent factors 1( ,..., )t t Jtg g g ′= .  That is,  

 t g t tx g uη= +Β + , (1) 

where 1( ,..., )t t Ntx x x ′= , η  is the N-vector of individual intercepts, gΒ  is the N J  matrix of 

factor loadings, and tu  is the N-vector of idiosyncratic components of individual returns with 

( ) 0t t J NE g u ×′ = .  The matrix gΒ  is assumed to have full column rank ( ( )grank JΒ = ) because 
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otherwise, the model (1) can reduce to a ( 1)J   or smaller factor model.  Both tg  and tu  are 

unobservable. 

 Observables are K empirical factors, 1( ,..., )t t Ktf f f ′= , which are correlated with r  (≤ J) 

latent factors in tg  but not with the idiosyncratic errors in tu .  This assumption implies that  

 t t tg f vθ= + Ξ + , (2) 

where θ  is the J-vector of intercepts and Ξ  is a J K×  matrix of coefficients with ( )rank Ξ = r, 

( ) 0t t K NE f u ×′ = , ( ) 0t t K JE f v ×′ = , and ( ) 0t t J NE v u ×′ = .  The error vector tv  is the vector of the 

components of tg  that is not correlated with tf .  If we substitute (2) into (1), we obtain 

 ( ) ( )t g g t g t t t tx f v u fη θ α ε= +Β +Β Ξ + Β + ≡ +Β + , (3) 

where we denote the ith row of α  and Β  by iα  and 1 2( , ,..., )i i i iKβ β β β′ = , respectively.  The focus 

of this paper is to estimate the rank of the beta matrix Β , which we denote by r . 

 Some remarks follow on the linear factor model (3).  First, the rank of gΒ = Β Ξ  is 

determined by that of Ξ  because gΒ  is a full column rank matrix.  That is, ( )rank rΒ = , which 

is the number of the latent factors or their linear combinations that are correlated with the 

empirical factors tf .  Thus, the rank of the beta matrix Β equals the maximum number of true 

latent factors that can be explained by the empirical factors tf , and the rank can be smaller than 

the total number of true factors, J.  Second, even if individual returns are generated by an exact 

factor model (in which the idiosyncratic errors in tu  in (1) are mutually independent), the errors 

in tε  in (3) could be cross-sectionally correlated through g tvΒ  unless the variables in tf  are 

perfectly correlated with tg  (so that 10t Jv ×= ).  Accordingly, the rank of the beta matrix Β  needs 

to be estimated allowing for possible cross-sectional correlations in tε .  Third, if r J= , the beta 

matrix can perfectly explain expected individual returns.  For example, if J Kγ = = , that is if 

the number of empirical factors tf  equals the number of true latent factors tg  ( K J= ) and if the 

former variables are correlated with all of the latter variables ( r J= ), the beta matrix Β has the 

full column rank and can explain expected individual returns perfectly.  Specifically, there exists 

a unique K-vector γ  satisfying the pricing restriction, ( )tE x γ= Β ,1 where tx  contains excess 

1 If tx  contains raw returns, ( ) [1 , ]t NE x γ= Β , where1N  is an N-vector of ones. 
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returns; see Lewellen, Nagel, and Shanken (2010).  However, if r J K= < , that is if too many 

empirical factors are used compared to the number of true latent factors, the beta matrix does not 

have full column rank.  As a consequence, there are an infinite number of K-vectors γ  satisfying 

the pricing restriction.  The beta matrix Βmay still perfectly explain the expected excess returns 

( )tE x , but the risk prices (γ ) are not unique.  For this case, Burnside (2010) has shown that the 

two-pass estimator of γ  is not asymptotically normal.  This problem arises even if all of the 

empirical factors tf  are correlated with (linear combinations of) the true latent factors tg .  To 

explain individual returns, the use of too many empirical factors is not harmful as long as each of 

them is correlated with true latent factors.  However, the resulting two-pass estimates of factor 

prices would not provide reliable statistical inferences if the number of the empirical factors used 

is greater than the number of true latent factors. 

 In order to discuss how to estimate the rank of the beta matrix Β  in (3), let us introduce 

some notation.  Let 

  1 1
1 1

ˆ ˆ( )( ) ; ( )( )T T
xf t t t ff t t tT x x f f T f f f f− −

= =′ ′Σ = Σ − − Σ = Σ − − , 

where 1
1

T
t tf T f−
== Σ  and 1

1
T
t tx T x−
== Σ .  Then, the Ordinary Least Squares (OLS) estimator of Β  

is given by 1
1 2

ˆ ˆ ˆˆ ˆ ˆ[ , ,..., ]N xf ffβ β β −′Β = = Σ Σ .  We also define  

  2 1 2
1

ˆˆ ( ) [( ) ( )]T
i t it i i tT K x x f fσ β−

= ′= − Σ − − − ; 2 1 2
1ˆ ˆN

i iNεσ σ−
== Σ , 

where 2ˆεσ  is a consistent estimator of 2 var( )itεσ ε= . 

 The “Modified Bayesian Information Criterion” (MBIC) estimator we propose is the 

minimizer of the following criterion function:  

 ( )2
1

ˆ ˆ ˆ ˆ( ) / ( ) )( )  (K p
M j j ffC p T w T N p K pεψ σ−

= ′= ×Σ Σ Β Β − × − − , (4) 

where the function ( )w T  should be chosen such that ( )w T →∞  and ( ) / 0w T T →  as T →∞ .  

There are an infinite number of possible choices for ( )w T .  However, in unreported simulations 

we found that the MBIC estimator computed with 0.2( )w T T=  is more accurate than those with 

many different ( )w T  functions.  Thus, we use 0.2T  for our reported simulations and actual data 

analysis. 

 Betas corresponding to some empirical factors may have no cross-sectional variations.  

This possibility is not fictional.  For example, Connor and Korajczyk (1989) showed that an 

intertemporal and competitive equilibrium version of the Arbitrage Pricing Theory (APT) 
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implies the presence of a factor with unitary betas for all returns.  Burnside (2010) found 

evidence that for the 25 Size and Book-to-Market portfolio returns, the betas corresponding to a 

consumption growth factor (log-growth of real per capita consumption) may be constant.  Ahn, 

Perez and Gadarowski (2013) report that the market betas estimated from many different data 

sets covering different portfolios and/or different time periods often have very small variations.  

These results suggest that some empirical factors may have betas with little cross-sectional 

variations depending on what portfolios and what empirical factors are analyzed.  As Burnside 

(2010) showed, when betas corresponding to a factor are cross-sectionally constant, the two-pass 

estimation using gross returns (not excess returns) cannot identify risk prices.  Thus, it would be 

important to test whether such betas exist before risk prices are estimated by the two-pass 

method. 

 We can test whether some betas are cross-sectionally constant or not by comparing the 

ranks of two matrices: the beta matrix Β  and its demeaned version, NQ Β = 1 2( , ,..., )Nβ β β ′   , 

where NQ  =  11 1N N NI N − ′− , 1N  is an N-vector of ones, i iβ β β= − , and 1
1

N
i iNβ β−
== Σ .  If a 

column of Β  (or a linear combination of the columns of Β ) is proportional to a vector of ones, 

the corresponding column of the demeaned beta matrix ( NQ Β ) becomes a zero vector.  Thus, 

( )Nrank Q Β = 1r − .  For the same reason, if two columns of Β  are proportional to a vector of 

ones, ( ) 2Nrank Q rΒ = − .  If no column of Β  has constant betas, the two matrices Β  and NQ Β  

must have the same ranks.  Therefore, comparing the estimated ranks of the beta matrix (Β ) and 

the demeaned beta matrix ( NQ Β ), we can determine whether a constant-beta factor exists in tf . 

 The rank of NQ Β  can be also estimated by the MBIC method introduced above with a 

small modification.  The criterion function we can use is  

( )2
1

ˆ ˆ ˆ ˆ( ) / ( ) ( 1 )( )K p
M j j ff ND p T Q w T N p K pεψ σ−

= ′= ×Σ Σ Β Β − × − − − , (5) 

where p = 1, ... , K–1, and ( ) 0MD K = .  The MBIC estimator is the minimizer of ( )MD p .  We 

refer to this estimator as “MBIC estimator for demeaned betas” (MBICD).  

 

2.2. Consistency of the MBIC and MBICD estimators   

In this subsection we show the consistency of the MBIC and MBICD estimators. In what follows, 

the norm of a matrix A is denoted by 1/2[ ( )]A trace A A′= .  We define c  as a generic positive 

constant.  With this notation, we make the following assumptions for the factor model (3):  
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Assumption A (empirical factors): 1
1( )( )T

t t t p fT f f f f−
=

′Σ − − → Σ , and p ff µ→ , 

where 1
1

T
t tf T f−
== Σ , fΣ  is a finite and positive definite matrix and fµ  is a finite vector. 

 

Assumption B (betas): (i) i cβ ≤  for all 1, 2, ,i N=   and for any N.  (ii) ( )rank rΒ =  

and ( )Nrank Q Β  = dr  ( r≤ ), for all N K> , where 0 dr r K≤ ≤ ≤ .  (iii) For any N K> , / N′Β Β  

is a finite matrix.  If N →∞ , 1
1

N
i iN ββ µ−
=Σ →  and /NQ N ββ′Β Β →Σ , where βµ  is a 1K ×  finite 

vector and ββΣ  is K K×  finite matrix with ( ) drank rββΣ = . 

  

Assumption C (idiosyncratic errors): (i) ( ) 0itE ε =  and 4
itE cε ≤  for all i and t , and  

 
2

1 1 1 1 1
1 1 1 ( )N T N T T

i t it i t s it isE E c
N NTT

ε ε ε= = = = =

  Σ Σ = Σ Σ Σ ≤  
   

. 

(ii) 1 2 2
1lim ( )T

T t it ip T E ε σ−
→∞ =Σ = , and 20 i cσ< < for all i. 

 

Assumption D (weak dependence between factors and idiosyncratic errors): 

 
2

1 1 1 1 1
1 1 1 ( )N T N T T

i t t it i t s it is t sE f E f f c
N NTT

ε ε ε= = = = =

 
′Σ Σ = Σ Σ Σ ≤ 

  
. 

 

The four assumptions are slightly more general than the assumptions used by Bai and Ng 

(2002) to estimate the number of true latent factors.  Assumption A implies that the empirical 

factors should be stationary and ergodic.  Assumption B(i) simply means that the betas are finite 

for any individual return. Assumption B(ii) allows the rank of Β  to be smaller than the number 

of empirical factors tf .  Assumption B(iii) implies that for the cases where N  is large, the K K×  

matrix / N′Β Β  is asymptotically finite.  The MBIC estimator, as well as the MBICD estimator, 

does not require large N.  Under Assumption B(iii), the estimator is consistent regardless of the 

size of N.  Under Assumption B, we treat the betas as fixed constants, not as random variables.  

We can relax this assumption, but at the cost of more notation.    

Assumption C allows time-series correlation in the errors itε .  It does not impose any 

restriction on possible cross-sectional correlations among the error terms itε , either. Our 
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asymptotic results do not depend on the covariance structure of the errors.  Assumption C 

implies that for all i, 1/2
1

T
t itT ε−
=Σ  is a random variable with finite variance for each i.  Similarly, 

Assumption D implies that the random vectors 1/2
1

T
t it tT fε−
=Σ  have finite variance matrices for 

every i.  These two assumptions are the general assumptions under which the OLS estimator of 

each row of the beta matrix Β  is consistent and asymptotically normal.  

As we discussed above, when the empirical factors tf  are proxy variables for true latent 

factors, the error vector tε  = 1( ,..., )t Ntε ε ′  may contain factor components.  Assumptions C and D 

allow such cases. 2  To see why, consider a simple case in which the itε  have a one-factor 

structure: it i thε ξ=  where ( )tE h  = 0, ( ) 0t tE h f = , 4( )tE h c< , and 1
1 1 ( )T T

t s s t t sT E h h f f−
= = ′Σ Σ < c for 

all t and i cξ <  for all i.  For this case, the random variables 1/2
1

T
t t tT h f−
=Σ  have finite variances.  

Thus, we can easily see that Assumption C holds.  In addition, 

  2 3
1 1 1 1

1 1( ) ( )T T T T
t s it is t s i t s t s t sE f f E h h f f c

T T
ε ε ξ= = = =′ ′Σ Σ = Σ Σ < . 

Thus, Assumption D holds.  Given that itε  can have a factor structure, estimating the rank of Β  

is not equivalent to estimating the number of all of the true latent factors in response variables. 

The rank of Β  is the number of true latent factors or their linear combinations that are correlated 

with the empirical factors tf .  Hence, the rank estimation method works well even if the 

empirical factors are correlated with only a subset of true latent factors.  The uncorrelated latent 

factors are subsumed in the error terms with a factor structure. 

The following theorem presents the asymptotic properties of the eigenvalues of the two 

matrices ˆ ˆ ˆ /ff N′Σ Β Β  and ˆ ˆ ˆ /ff NQ N′Σ Β Β . 

 

Theorem 1:  Under Assumptions A – D,  

(i) ˆ ˆ ˆlim ( / ) 0T j ffp Nψ→∞ ′Σ Β Β >  for 1K r j K− + ≤ ≤ ;  

(ii)  1ˆ ˆ ˆ( / ) ( )j ff pN O Tψ −′Σ Β Β = , for1 j K r≤ ≤ − ; 

(iii) ˆ ˆ ˆlim ( / )T j ff Np Q Nψ→∞ ′Σ Β Β > 0, for 1dK r j K− + ≤ ≤ ; 

(iv) 1ˆ ˆ ˆ( / ) ( )j ff N pQ N O Tψ −′Σ Β Β = , for1 dj K r≤ ≤ − . 

2 In the model of Bai and Ng (2002), the error terms are not allowed to have a factor structure. 

9 
 

                                                           



 

Theorem 1 shows that the first K- r  (K- dr ) small eigenvalues of ˆ ˆ ˆ /ff N′Σ Β Β  ( ˆ ˆ ˆ /ff NQ N′Σ Β Β ) 

have the same convergence rates, which are different from those of the other eigenvalues.  This 

difference in convergence rate is used to identify the rank of the beta matrixΒ  ( NQ Β ).  Notice 

that the asymptotic properties of the eigenvalues do not require any restriction on N.  Theorem 1 

holds for any fixed number N. 

Theorem 1 implies our main theoretical results.  Stated formally: 

 

Theorem 2:  Under Assumptions A – D, the MBIC estimator is a consistent estimator of the rank 

of beta matrix Β , r.  Similarly, the MBICD estimator is a consistent estimator of the rank of 

demeaned beta matrix NQ Β , dr .   

 

A technical point is worth noting here.  Theorem 2 is proven under the assumption that 

data are balanced; that is, all individual returns are observed for all T time periods.  However, in 

practice the data need not be balanced.  The MBIC and MBICD estimators can be computed 

even if each asset in the data has a different number of time series observations ( iT ).  The betas 

can be estimated by asset-by-asset time series regressions, as long as the betas of each asset are 

estimated with a sufficiently large number of time series observations.  The average time series 

observations, , can be used for T in the MBIC and MBICD estimators.        

While Theorem 2 shows the consistency of the MBIC and MBICD estimators, it does not 

provide any prediction about the estimators’ finite-sample performances.  Later in Section 3, we 

investigate its finite-sample performance through Monte Carlo simulation exercises. 

 

2.3. Related Estimators 

This subsection discusses some related estimators and the link between the MBIC estimator and 

the BIC estimator of Cragg and Donald (1997).  We discuss the link between the two estimators 

under Assumptions A – D, and the additional assumption that N is fixed.  We do so because the 

BIC estimator is designed for the cases with fixed N. 

 Under Assumptions A – D and the assumption of fixed N, it can be shown that as T →∞ , 

  ( )ˆ( ) 0,dT vec N′ ′Β −Β → Ω , 
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where ( )vec •  is a matrix operator stacking all the columns in a matrix into a column vector, and 

“ d→ ” means “converges in distribution.”  Let Ω̂  be a consistent estimator of Ω   as T →∞  

with a fixed number (N) of individual returns; and use the notation to denote an N K×  matrix 

,K pG  (0 ≤ p ≤ K) that minimizes an objective function 

  1
, , ,

ˆˆ ˆ( , ) ( ) ( )T K p K p K pG p Tvec G vec G−′Π = Β− Ω Β− . (6) 

 Cragg and Donald (1997) showed (i) that ,
ˆ( , )T K p pG pΠ → ∞ if p r<  and (ii) that 

,
ˆ( , )T K rG rΠ 2

( )( )d N r K rχ − −→ , where r  is the true rank of Β  and “ p→ ” means “converges in 

probability.”  Based upon these findings, they develop two different rank estimation methods.  

One estimator, which they refer to as the TC (Testing Criterion) method, is obtained by 

repeatedly testing the null hypotheses of r p=  (p = 0, 1 , 2, ...., K – 1; where K is the number of 

empirical factors used) against the alternative hypothesis of full-column rank.  Each hypothesis is 

tested by using ,
ˆ( , )T K pG pΠ  as a 2

( )( )N p K pχ − −  statistic.  The TC estimate is the minimum value of 

p that does not reject the hypothesis of r p= .  If all of the null hypotheses are rejected, the TC 

estimate equals K. 

Recently, Burnside (2010) proposed to use the , 1
ˆ( , 1)T K KG K−Π −  statistic to test the null 

hypothesis of 1r K= −  against the alternative of r K= .  His simulation results show that the test 

performs well in small samples, especially when it is applied to covariance matrices instead of 

beta matrices.  His method is designed to determine whether the beta matrix (or the covariance 

matrix of empirical factors and individual returns) has full column rank or not.  In contrast, using 

the TC estimator, we can estimate the true rank of r itself. 

 The other estimator, which Cragg and Donald (1997) refer to as BIC (Bayesian 

Information Criterion) estimator, is obtained by finding a value of p, which minimizes the 

criterion function 

 ,
ˆ( ) ( , ) ln( ) ( )( )T K pC p G p T N p K p= Π − × − − , (7) 

where p = 0, 1, ... , K.  For (7), ln( )T  can be replaced by any ( )w T  function such that ( )w T →∞  

and ( ) / 0w T T →  as T →∞ .  Clearly, ln( )T  is a possible ( )w T  function to use.  The BIC 

estimator computed with any ( )w T  is a consistent estimator as T →∞  with fixed N.  Replacing 

ln( )T  by ( )w T  in (7), we can see that the MBIC criterion function ( )MC p  in (4) has a form 
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similar to that of the criterion function ( )C p .  In fact, as we show below, the MBIC estimator 

numerically equals a BIC estimator computed with a different weighting matrix for Ω̂ . 

 While the BIC estimator is consistent as T →∞ , its finite-sample performance may 

depend on the choice of the ( )w T  function.  In some unreported simulations we found that the 

BIC estimator performs better in finite samples when ( ) ln( )w T T=  is used, while the MBIC 

estimator performs better with 0.2( )w T T= .   

 While both the TC and BIC estimators have desirable large-sample properties, they are 

computationally burdensome to use in practice, especially for the cases with large N.  This is so 

because the matrix ,K pG  contains a large number of unknown parameters to be estimated 

especially for the cases with large N and/or p.  In unreported experiments, we attempted to 

compute the TC and BIC estimators using the same simulated data that are used for the results 

reported in the next section.  We observed that standard minimization algorithms failed to find 

,
ˆ

K pG  too often. 

 This computational problem can be resolved if some restrictions are imposed on the 

covariance structure of the error terms.  For example, suppose that the idiosyncratic error vectors 

tε  are independently and identically distributed (i.i.d.) conditionally on the empirical factors tf  

with the conditional variance-covariance matrix, ( | )t tVar f εεε = Σ .  The individual errors itε  are 

still allowed to be cross-sectionally correlated; that is, the off-diagonal elements of εεΣ  need not 

be zero.  For this case, the computation procedures for the TC and BIC estimators are 

considerably simplified.  When the error vectors are i.i.d. over time, 1
1

ˆ ˆ ˆ
ffεε
−Ω = Σ ⊗Σ  is a 

consistent estimator of Ω , where “⊗ ” means the Kronecker product and ˆ
εεΣ  is a consistent 

estimator of εεΣ ; i.e., 

  1
1ˆ ˆ ˆ[( ) ( )][( ) ( )]T

t t t t tx x f f x x f f
T kεε = ′Σ = Σ − −Β − − −Β −
−

. 

Cragg and Donald (1997) show that when 1Ω̂  is used for Ω̂ ,  

  ( )1
, , 1

ˆ ˆ ˆ ˆ ˆ ˆ( , ) 0; ( , ) K p
T K K T K p j j ffG K G p T εεψ− −

= ′Π = Π = ×Σ Σ Β Σ Β , (8) 

for p  = 0, 1,  … , K – 1.  We denote by the “BIC1” estimator the minimizer of the criterion 

function (7) with (8): 

 ( )1
1 1

ˆ ˆ ˆ ˆ( ) ln( ) ( )( )K p
j j ffC p T T N p K pεεψ− −
= ′= ×Σ Σ Β Σ Β − × − − . (9) 
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We also refer to the TC estimator computed with (8) as the TC1 estimator.  Both the TC1 and 

BIC1 estimators can be easily computed with any software that can compute eigenvalues.     

 It is important to note that the TC1 estimator is inconsistent if the error vectors tε  are 

autocorrelated or heteroskedastic (conditionally on tf ) over time.  This is because, when 1Ω̂  is 

used, the statistic ,
ˆ( , )T K rG rΠ  is no longer a 2

( )( )N r K rχ − −  random variable asymptotically.  Thus, it 

is inappropriate to use the sequential 2χ -tests to estimate the true rank, r. 

 In contrast, the BIC1  estimator is still consistent.  This is a fact that is not well known in 

the literature.  As Ahn, Lee and Schmidt (2013, p. 6) point out, the consistency of the BIC 

estimator requires the statistic ,
ˆ( , )T K rG rΠ  to be a random variable that is bounded in probability.  

The statistic needs not be a 2χ  random variable.    When the error vectors are not i.i.d. over time, 

1Ω̂  is not a consistent estimator of Ω .  However, following Jagannathan and Wang (1996), we 

can easily show that the statistic ,
ˆ( , )T K rG rΠ  computed with 1Ω̂  is asymptotically a weighted 

sum of independent 2
1χ  random variables, which is bounded in probability.  Thus, the BIC 

estimator computed with 1Ω̂ , which is the BIC1 estimator, remains consistent even if the error 

vectors are autocorrelated and/or heteroskedastic over time. 

 The BIC1 estimator can be easily modified to estimate the rank of the demeaned beta 

matrix.  Define the following criterion function: 

  ( )1 1
ˆ ˆ ˆ ˆ( ) ( ) ln( ) ( 1 )( )K p

j j ff N N N ND p T Q Q Q Q T N p K pεεψ− +
= ′= ×Σ Σ Β Σ Β − × − − −  (10) 

where p = 1, ... , K–1, and 1( ) 0D K = .  Then, the BIC1 estimator of the demeaned beta matrix 

( NQ Β ) equals the minimizer of 1( )D p . We refer to this estimator as “BICD1” estimators.  We 

note that even for the cases in which ˆ
εεΣ  has full column rank, ˆ

N NQ QεεΣ  does not.  That is why 

we use the Moore-Penrose generalized inverse of ˆ
N NQ QεεΣ  in (10).   

 Because the BIC1 estimator is consistent as T →∞  with fixed N, we can expect that the 

estimator would have good finite-sample properties for the data with large T and relatively small 

N.  However, it is unknown whether the BIC1 estimator would remain consistent as both N  and 

T grow infinitely.  One immediate problem in using the BIC1 estimator for the data with large N 

is that ˆ
εεΣ  is not invertible if N T> .  This numerical problem can be resolved if we use the 
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Moore-Penrose generalized inverse matrix of ˆ
εεΣ  ( ˆ

εε
+Σ ) instead of 1ˆ

εε
−Σ .  However, it is still 

difficult to determine whether the BIC1 estimator computed with ˆ
εε
+Σ  would be consistent for the 

data with both large N and T.  In this paper we do not attempt to investigate the asymptotic 

distribution of the BIC1 estimator when both N and T are large.  Instead, we will consider in 

Section 3 the estimator’s finite-sample properties and compare them to those of the MBIC 

estimator. 

 Similarly to the BIC1 estimator, our MBIC estimator is a BIC estimator computed with a 

different weighting matrix for 1ˆ −Ω .  Specifically, if we compute the BIC estimator using  
2 1

2
ˆ ˆˆ ( )N ffIεσ

−Ω = ⊗Σ  for Ω̂  and using 0.2( )w T T=  instead of ln( )T , we obtain the MBIC estimator.    

Interestingly, 2Ω̂  is a consistent estimator of Ω  under the assumption that the errors itε  are i.i.d. 

over both different time and individual returns.  This assumption is stronger than the assumption 

under which 1Ω̂  is a consistent estimator of Ω  (the errors are i.i.d. only over time).  Thus, from 

the perspective of BIC estimation, the MBIC estimator is an estimator motivated under quite 

restrictive assumptions.  However, as we have shown already in subsection 2.2, the MBIC 

estimator is consistent as T →∞  regardless of the size of N.  The errors therefore can be both 

serially and cross-sectionally correlated.   

 

3. Simulation Results 

3.1. Basic Simulation Setup 

The foundation of our simulation exercises is the following data generating process: 

 1
K

it i j ij jt itx fα β ε== + Σ + ; 21 1 2 2
2 2

1 2

( ) 1i t i t
it it

i i

h h vξ ξε φ φ
ξ ξ

+
= + −

+
, 

where the empirical factors jtf  and the 1iξ , 2iξ , 1th , 2th , and itv  in itε  are all randomly drawn 

from (0,1)N .  For simplicity, we set 0iα =  for all i.  Under this setup, the variance of error itε  
is equal to one for all i and t.  The factor components 1th  and 2th  can be viewed as common latent 

factors that are not correlated with the empirical factors jtf .  The errors itε  are cross-sectionally 

correlated through 1th  and 2th  if 0φ ≠ .  We have also considered the cases in which the errors 

are serially correlated.  We do not report the results because they are not materially different 
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from the results reported below.  For the reported simulations, we set φ  = 0.2.  The use of greater 

values for φ  does not change estimation results substantially. 

 We generate the beta matrix Β  by the following three steps.  First, we draw an N r×  

random matrix gΒ  such that its first column equals the vector of ones, and the entries in the other 

columns are drawn from (0,1)N .  Second, we draw a random K K×  positive definite matrix, 

compute the first r  orthonormalized eigenvectors of the matrix, and set a K r×  matrix C  using 

the eigenvectors. 3   Finally, we set 1/2
g C′Β = Β Λ , where 1( ,..., )rdiag λ λΛ = .  This setup is 

equivalent to the case in which individual returns are generated by r true factors 
1/2

1( ,..., )t t rt tg g g C f′ ′= = Λ  with ( )tVar g = Λ .  The factor loading matrix corresponding to tg  is 

gΒ .  By construction, the factors in tg  are mutually independent, and the betas corresponding to 

1tg  are constant over different individual response variables.  Under this setup, ( )rank rΒ =  and 

( ) 1Nrank Q rΒ = − .  We use this setup to investigate the finite-sample performances of the BIC1, 

MBIC, BICD1 and MBICD estimators, as well as that of the TC1 estimator.   

 Under our data generating setup, each of the empirical factors tf  can have non-zero 

explanatory power for individual response variables itx , even if the beta matrix Β does not have 

full column rank.  The parameter jλ  equals the variance of the jth true factor, jtg .  Given that gΒ  

is drawn from (0,1)N , the jλ  equals the signal to noise ratio (SNR) of jtg  (e.g., ratio of the 

return variations caused by the true factor jtg  and by idiosyncratic errors itε ).  The population 

average R-square (average explanatory power of the empirical factors tf  for individual response 

variables itx ) equals 1 1( ) / (1 )r r
j j j jλ λ= =Σ + Σ . 

We try 3 different values of T: T = 60, 120, and 240.  For each T, we generate seven 

different numbers of response variables: 

{25,30,36,40,50,100,200}N ∈  for 60T = ; 

{25,50,60,75,80,100,200}N ∈  for 120T = ; 

{25,50,100,120,145,160,200}N ∈  for 240T = . 

We have chosen different numbers of response variables for each T because the finite-sample 

performances of the BIC1 and BICD1 estimators critically depend on the relative sizes of T and 

3The random matrix is of the form M M′  where the entries of the K K×  matrix M are drawn from N(0,1). 
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N.  What we find from the reported and unreported simulations is that the two estimators tend to 

begin over-estimating the ranks of the beta and demeaned beta matrices as N increases further 

from one-half of T (when 120T ≤ ) or two-thirds of T (when 240T ≤ ).  We use different values 

of N for each T to highlight this pattern. 

For each combination of N and T, we also consider two cases: one with five empirical 

factors ( 5K = ) with two different beta ranks, r = 1 and 3; and the other with ten empirical 

factors ( 10K = ) with two different beta ranks, r = 1 and 3.  For each simulation, we set the 

SNRs of the true factors ( jλ ) at values not greater than 0.05.  For each combination of N, T, K, 

and r, 1,000 samples are drawn. 

Our simulation setup may not represent the true data generating processes of asset returns.  

However, we choose parameter values such that the simulated data have properties similar to 

those of actual data.  First, empirical studies of asset pricing models routinely use monthly data 

over five, ten, or twenty years.  The values of T are chosen to be consistent with this practice.  

Second, the empirical factors proposed in the literature generally have low explanatory power for 

individual stock returns although they have higher explanatory power for portfolio returns.  To 

investigate the cases in which empirical factors have limited explanatory power for response 

variables, we have generated data with latent factors with low SNRs ( jλ ).  Third, the 

idiosyncratic error components of actual returns are likely to be cross-sectionally correlated.  

Under our simulation setup, the error terms are cross-sectionally correlated through the 

unobserved factor components 1th  and 2th .  We could have generated cross-sectionally correlated 

errors using the estimated variance-covariance matrix of the errors from actual data, but from the 

actual data with N  close to or greater than T, we could not consistently estimate the variance 

matrix of the error vector 1 2( , ,..., )t t t Ntε ε ε ε ′= .  For example, the estimated variance matrix is 

not invertible if N > T although the true variance matrix would be invertible.  Thus, the errors 

generated based on an estimated variance matrix from actual data are likely to have a different 

cross-sectional covariance structure from that of the idiosyncratic error components of actual 

returns.  

Finally, the empirical factors proposed in the literature ( tf  in our notation) are unlikely to 

be perfectly correlated with true latent factors ( tg  in our notation).  When the empirical factors 

are not perfectly correlated with true latent factors, the finite-sample performances of the rank 

estimators could depend on the degrees of correlation between tf  and tg .  Our simulations, 
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however, can provide useful information for such general cases.  When empirical factors are 

imperfect proxy variables, the errors itε  should be cross-sectionally correlated as we discussed in 

section 3.  In addition, for the cases of imperfect correlation, the SNR of a latent factor ( jλ ) in 

our simulations can be interpreted as the SNR of a linear combination of empirical factors that is 

maximally correlated with the factor.  For example, if a latent factor has SNR of 0.01, it can be 

interpreted as the linear combination of the empirical factors maximally correlated with the latent 

factor having SNR of 0.01 and explaining 1% (=0.01/1.01) of total variation in response 

variables.  

 

3.2. Simulation Results  

Our simulation is designed to answer three questions.  First, given that the TC1 and BIC1 

estimators are designed for data with relatively large T and small N, we wish to know what data 

size is required to obtain reliable inferences from the estimators.  Second, the main difference 

between the BIC1 and MBIC estimators is that the former is computed controlling for cross-

sectional correlation in the errors.  While both estimators are consistent as T → ∞ with fixed N, 

controlling for cross-sectional correlation might improve the accuracy of the BIC estimator when 

a relatively small number of response variables are analyzed.  We investigate this possibility.  

Third, and most importantly, we wish to (i) know the data size with which the BIC1 and MBIC 

estimators can accurately estimate the rank of the beta matrix and (ii) assess the relative 

performance between the two. 

 We begin by considering the finite-sample performance of the TC1 estimator.  Table 1 

reports the TC1 estimation results from our simulations with five empirical factors (K = 5).  We 

consider two cases: 1r =  and 3r = .  Data are generated such that the true latent factors (or 

linear combinations of the five empirical factors) have low SNRs: 0.02, 0.03, and 0.05. With 

these small values of SNR, each of the true latent factors can explain smaller than 5% of total 

variation in response variables ( 2R  in the table).  We have chosen these low values of SNRs 

because some empirical factors proposed in the literature have only limited explanatory power 

for portfolio or individual stock returns.  Using the low values of SNRs, our simulation results 

provide better guidance for the data of actual returns.  Table 1 reports the percentages (%) of 

correct estimation by the TC1 estimator.  The percentages of underestimation and overestimation 

are reported below in parentheses. 
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 Table 1 shows that the TC1 estimator performs rather poorly even if N T< .  For the 

cases with 25N = , the accuracy of the TC1 estimator is not greater than 78.9% (when 240N = ) 

if r = 1 and not greater than 87.8% if r = 3. The estimator’s performance improves with T but 

deteriorates with N.  The accuracy of the estimator is not greater than 8.7% for the cases with 

50N ≥  and 120T ≤ , not greater than 55.0% for the cases with 50N ≥  and 240T = .  

Furthermore, in all of the cases considered in Table 1, the performance of the TC1 estimator is 

dominated by that of the BIC1 estimator, as shown in Table 2. 

The performance of the BIC1 and MBIC estimators are reported in Table 2.  The data 

generating process is the same as the one described in the beginning of this section.  We report 

the results from the simulated data with SNRs of 0.02, 0.03 and 0.05 if 120T ≤  and with SNRs 

of 0.01, 0.02 and 0.03 if 240T = .  We do so because the BIC1 and MBIC estimators can capture 

much weaker latent factors when 240T = . 

The accuracy of the BIC1 estimator appears to have a non-monotonic relationship with 

the number of response variables (N).  For the cases with 1r = , the accuracy of the estimator 

increases with N when / 2N T≤  and decreases with N when / 2T N T< ≤ .  The estimator 

overestimates the rank of the beta matrix when / 2T N T< ≤ .  When N T> , the accuracy of the 

estimator increases with N up to some points (e.g., ( , )T N  = (60, 100) and (120, 200)).  However, 

as N increases further, the estimator begins to underestimate the beta rank, and its accuracy drops 

sharply. In order to investigate this irregular behavior of the BIC1 estimator further, we 

conducted some additional experiments using data with / 2N T> .  To save space, we just 

summarize the results here without reporting them.  For a given T, the degree of overestimation 

by the BIC1 estimator increases as N increases from / 2N T=  to N T= .  However, the 

accuracy of the estimator improves as N increases from N T=  to 2N T=  (or near 2T).  Then, as 

N increases further from 2N T=  (or near 2T), the estimator starts to under-estimate the beta rank.  

In general, the BIC1 estimator tends to over-estimate the beta rank if / 2 2T N T< < , while it 

severely under-estimates the rank when 2N T> .  The tendency of over-estimation reverses to 

the tendency of under-estimation at some point in 2T N T< < .  Thus, the BIC1 estimator 

occasionally performs well at some points when 2T N T< < .  However, even for such cases, the 

BIC1 estimator is outperformed by the MBIC estimator. 

We can find a similar pattern for the cases with 3r = .  The accuracy of the BIC1 

estimator increases with N up to some points where / 2 2 / 3T N T< ≤ .  However, the accuracy 

drops quickly and monotonically with N after such points.  The results reported in Table 2 
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suggest that the BIC1 estimator should be used with caution for data with / 2N T> .  The 

estimator may not be appropriate to use for data with 2 / 3N T> .  

Different from the BIC1 estimator, the accuracy of the MBIC estimator generally 

increases with N.  In particular, when 100N ≥ , the MBIC estimator outperforms the BIC1 

estimator in all of the cases with λ ≥ 0.03 (in which each latent factor has SNR of 0.03 or greater 

and can explain at least 2.9% of total variation in response variables).  The power of the 

estimator to identify weaker latent factors increases with T.  For example, when 60T =  and 

100N ≥ , the MBIC estimator can predict the correct beta rank with at least 93.5% accuracy if 

the latent factors correlated with empirical factors have SNRs of 0.05 or greater ( 0.05λ ≥ ).  

When T = 120 and N ≥ 100, the accuracy of the estimator is greater than 97.8% if 0.03λ ≥ .  

When T = 240 and 100N ≥ , the estimator can predict the correct rank of beta matrix with at 

least 99.8% accuracy when all of the latent factors (correlated with empirical factors) have SNRs 

of 0.02 or greater.  From unreported experiments with data with 360T =  and 100N ≥ , we also 

find that even if latent factors’ SNRs equal 0.01, the MBIC estimator can predict the correct beta 

rank with at least 99.8% accuracy if 1r =  and with at least 82.9% of accuracy if 3r = .  In 

contrast, for the cases with 360T = , 100N = , and 0.01λ = , the BIC1 estimator predicts the 

correct beta rank with 69.4% accuracy if r = 1, with as low as 10.2% accuracy if r = 3. 

When N = 25 and 60T > , the MBIC estimator often has greater power than the BIC1 

estimator to identify the weak factors with SNRs of 0.02 or 0.01, although its accuracy is not 

greater than 77.3% (see the case with T = 120, N = 25, and r = 1).  For the cases with / 2N T< , 

the MBIC estimator has greater power to detect such weak factors.  The BIC1 estimator’s 

accuracy increases with N up to some point where / 2 2 / 3T N T< < .  For the cases in which 

/ 2 2 / 3T N T≤ ≤ , the BIC1 estimator often has greater power for the factors with SNRs of 0.02 

or 0.01 (0.02 for the cases with 120T ≤  and 0.01 for the cases with 240T ≥ ), especially when r 

= 3.  However, for the cases with either N < T/2 or N > 2T/3, the MBIC estimator outperforms 

even for weak factors with SNRs of 0.02 or 0.01.  Overall, the results reported in Table 2 

indicate that the MBIC estimator is generally the better estimator to use. 

The accuracy of the BIC1 and MBIC estimators may depend on the number of empirical 

factors (K).  Table 3 reports the estimation results from the cases with K = 10.  Comparing the 

results from Table 2, we can see that the accuracy of the two estimators generally falls as more 

empirical factors are used (while their explanatory power remains the same).  However, the 
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general performance patterns of the two estimators remain the same.  When N ≥ 80 and T ≤ 120, 

the MBIC estimator outperforms the BIC1 estimator if the latent factors correlated with the 

empirical factors have SNRs of 0.02 or greater.  When 240T = , the MBIC estimator 

outperforms the BIC1 estimator as long as all of the latent factors have SNRs of 0.02 or greater.  

Overall, the MBIC estimator remains a better estimator.     

Finally, we consider the performances of the BICD1 and MBICD estimators.  Under our 

simulation setup, the rank of the demeaned beta matrix equals r – 1.  We use the simulated data 

with r = 3.  The estimation results are reported in Table 4.  The results are similar to those 

reported in Tables 2 and 3.  As N gets close to or larger than T, the MBICD estimator 

outperforms the BICD1 estimator for most of the cases and the difference between the relative 

performances of the two estimators becomes wider as the SNRs of the empirical factors increase.  

Overall, the MBICD estimator performs better than the BICD1 estimator. 

Our simulation results are summarized as follows.  First, the accuracy of the BIC1 

estimator has a non-monotonic relationship with the number of response variables (N).  The 

power of the estimator initially increases with N but falls as N increases further from some points 

(smaller than T).  Given this non-monotonic relationship, it is difficult to determine the size of 

data for which the estimator would be appropriate.  The BICD1 estimator shows the same pattern.  

Second, the power of the MBIC estimator generally increases with N.  When N ≥ 100, the 

estimator has high power to identify the latent factors with SNRs of 0.05 or higher if T = 60, 

those with SNRs of 0.03 or higher if T = 120, and those with SNRs of 0.02 or higher if T = 240.  

The MBICD estimator performs equally well.  Given these findings, the MBIC and MBICD 

estimators appear to be the better estimators to use.  

 

4. Application 

In this section, we estimate the ranks of different beta matrices using a variety of combinations 

of empirical factors.  Our estimation is conducted with monthly and quarterly data from 1952 to 

2011.  For the estimation with monthly data, we consider fifteen non-repetitive empirical factors 

from the three factors of Fama and French (1993, FF); the five factors of Chen, Roll, and Ross 

(1986, CRR); the three factors of Jagannathan and Wang (1996, JW); the three liquidity-related 

factors of Pastor and Stambaugh (2003, LIQ); the momentum factor (MOM, selling losers and 

buying winners 6 – 12 months ago); and the two reversal factors (REV, one by selling winners 

and buying losers 1 month ago and the other by selling winners and buying losers 13 – 60 
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months ago).  The FF factors are the CRSP value weighted portfolio return minus the return on 

the one-month Treasury bill (VW), SMB, and HML factors.4  The CRR factors are industrial 

production (MP), unexpected inflation (UI), change in expected inflation (DEI), the term 

premium (UTS), and the default premium (UPR), 5 while the JW factors are the VW, LAB 

(growth rate of labor income), and UPR factor.6  The three LIQ factors are aggregate liquidity 

level, traded liquidity, and innovation in aggregate liquidity.7  

Five sets of portfolios are used for regressions.  Four of them are the 25 Size and Book-

to-Market (B/M) portfolios, 30 Industrial portfolios, the 25 Size and Momentum portfolios, and 

the 100 Size and B/M portfolios.  Following the suggestion of Lewellen, Nagel, and Shanken 

(2010), we also consider the combined set of the 25 Size and B/M and 30 Industrial portfolios.8  

Excess returns on each portfolio are computed using the one-month Treasury bill rate as the risk-

free rate. 

 The data on the 100 Size and B/M portfolios are unbalanced because some portfolios 

have missing observations.  Specifically, twelve portfolios have some missing observations, with 

the maximum (average) number of missing observations being equal to 48 (21) out of 720 

monthly observations from January 1952 to December 2011.  As we discussed in Section 3, the 

MBIC and MBICD estimators can be computed with the portfolio-by-portfolio time series 

regressions using all of the observations available for each portfolio.  The MBIC and MBICD 

estimators defined in Section 2 are for balanced data in which T is the same for all cross-section 

units.  For unbalanced data, we use the average number of time series observations on individual  

portfolios for T.  

We also analyze individual stock returns (which include dividends).  Excess returns are 

used for regression.  The data are downloaded from CRSP.  Excluded from our data are REITs 

4All of the FF factors are available from Kenneth French’s website. 
5The CRR factors are available from Laura Xiaolei Liu’s webpage (http://www.bm.ust.hk/~fnliu/research.html).  For 
detailed information on how these factors have been constructed, see Liu and Zhang (2008).  The UPR factor 
(default premium) equals the yield spread between BAA- and AAA-rated bonds.     
 
6The LAB factor is constructed using the NIPA 2.1 and NIPA 2.6 tables for quarterly and monthly data, respectively. 
The tables are available at the Bureau of Economic Analysis’ webpage: http://www.bea.gov/iTable.  Specifically, 
the factor is the growth rate of total personal income minus personal dividend income divided by total population. 
   
7The LIQ factors are available from Lubos Pastor’s webpage, http://faculty.chicagobooth.edu/lubos.pastor/research. 
 
8According to Lewellen, Nagel, and Shanken (2010), the 25 Size and B/M portfolios have a strong factor structure 
favoring the FF model, and, thus, model specification tests can produce more reliable inferences when the tests are 
done with additional portfolios that are not strongly correlated with the SMB and HML factors. 
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(Real Estate Investment Trusts) and ADRs (American Depositary Receipts).  We have also 

excluded the stock-month observations in which the stocks show more than 300% excess returns 

in a given month because such huge variations are unlikely due to changes in common factors.  

Excessively high or low returns are most likely to be driven by idiosyncratic shocks.  Expectedly, 

the data on individual stock returns are heavily unbalanced.  Thus, to make sure the number of 

time series observations is sufficiently large for each stock, we have chosen the stocks whose 

numbers of time series observations are greater than or equal to 2 / 3T  for a given time span, T.  

Then, the average number of time series observations on individual stocks in the data is used for 

T in the MBIC and MBICD estimators. 

 For sensitivity analysis, we also estimate the above factor models using quarterly 

observations.  Analyzing quarterly portfolio and individual stock returns, we can examine seven 

additional factor models that are discussed in Lewellen, Nagel, and Shanken (2010): the CAPM; 

the consumption CAPM (CCAPM); the two conditional CCAPMs of Lettau and Ludvigson 

(2001, LL) and Lustig and Van Nieuwerburgh (2004, LVN); the durable-consumption CAPM of 

Yogo (2006, Y); the conditional CAPM of Santos and Veronesi (2006, SV); and the investment-

based CAPM of Li, Vassalou, and Xing (2006, LVX).  Lewellen, Nagel, and Shanken (2010) 

examined how well the seven models can explain expected returns of the 25 Size and B/M plus 

the 30 industrial portfolios.  Our goal here is not to replicate their analysis but to estimate how 

many true latent factors are correlated with the empirical factors proposed in their models. 

The empirical factors used by the seven models are VW for the CAPM model; CG 

(aggregate consumption growth rate) for the CCAPM; CG, CAY (aggregate consumption-to-

wealth ratio), and CG×CAY for the LL model; CG, MYMO (housing collateral ratio), and 

CG×MYMO for the LVN model; VW, DCG (durable-consumption growth rate), and NDCG 

(nondurable-consumption growth rate) for the Y model; VW and VW×LC (labor income-to-

consumption ratio) for the SV model; and DHH (change in the gross private investment for 

households), DCORP (change in the gross private investment for non-financial corporate firms), 

and DNCORP (change in the gross private investment for non-financial non-corporate firms) for 

the LVX model.9   

9 We are grateful to Jonathan Lewellen and Stefan Nagel for sharing their data with us.  The CG, CAY, and LC 
factors can be directly downloaded or constructed using the data available from Sydney Ludvigson’s website, 
http://www.econ.nyu.edu/user/ludvigsons.  The DCG and NDCG factors are constructed using data from the NIPA 
2.3.3 and NIPA 2.3.5 tables.  We also use the Consumer-Durables Goods: Chain-Type Quantity Indexes for Net 
Stock table for constructing DCG.  All these tables are available at the Bureau of Economic Analysis 
webpage: http://www.bea.gov/iTable.  For the DHH, DCORP, and DNCORP factors we use the Flow of Funds 
Accounts tables available at the Federal Reserve Board’s webpage: http://www.federalreserve.gov.  Specifically, we 
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4.1. Results from Monthly Stock Portfolio Returns 

In this subsection we report the estimation results obtained using the five sets of monthly 

portfolio returns.  The sample period is from January 1952 to December 2011 (T = 720).  The 

monthly observations on the LAB factor of Jagannathan and Wang (1996, JW) are available only 

from March 1959.  Thus, whenever we estimate a factor model with the JW factors, we use the 

data from March 1959 to December 2011 (T = 634).  As discussed above, the data on the 100 

Size and B/M portfolios are unbalanced.  Thus, we use the average of the time series 

observations on individual portfolios to compute the MBIC and MBICD estimates. 

 The cross-sectional dimension N equals the number of portfolios used to estimate a beta 

matrix.  The results from the entire sample period and two subsample periods are reported in 

Table 5.  For each combination of portfolio sets and empirical factors, we report the adjusted R-

square ( 2R , explanatory power of empirical factors) and the estimated rank of the beta matrix by 

the MBIC estimator.  The MBICD estimation results are reported in parentheses.  Our simulation 

results reported in Section 4 indicate that the BIC1 estimator produces reliable inferences when 

using data with 240T   and / 2N T .  The data used for Table 5 satisfy all these conditions.  

Thus, we also estimated the ranks of the beta matrices using the BIC1 and BICD1 estimators.  

The estimation results are not materially different from those from the MBIC and MBICD 

estimators, which are reported in Table 5. 

The results from the entire sample (T = 720, or T = 634 if the LAB factor of JW is used) 

and two sub-samples (T = 360, or T = 274 in the first sub-sample when JW is used) are in Panels 

A, B, and C of Table 5, respectively.10  The main observations from Panel A are as follows.  

First, for all of the five portfolio sets, the MBIC estimator predicts that the beta matrix 

corresponding to the FF factors has the rank of three.  This result is consistent with the notion 

that the three FF factors are correlated with three linearly independent latent risk factors.   

used the table FA155019005 for the DHH factor, the tables FA105019005 and FA105020005 for the DCORP factor, 
and the tables FA115019005 and FA115020005 for the DNCORP factor. 
 
10 We do not report the estimation results using the LIQ factors.  The data on the LIQ factors are only available from 
December 1969 to December 2008.  Our unreported estimation results (with the data from December 1969 to 
December 2008) show that the three LIQ factors generate a beta matrix with a rank of one for all of the five 
portfolio sets we analyze.  When the LIQ factors are added to the FF model, the rank of the beta matrix does not 
change for four out of the five portfolio sets we test.  The rank increases to four for only one case (the 25 Size and 
Momentum portfolios).  We do not find any evidence that the LIQ factors are correlated with additional latent 
factors that are not explained by the FF and CRR factors or by the FF and MOM+REV factors. 
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Second, the beta matrices corresponding to the MOM+REV, CRR or JW factors all fail 

to have full column rank.  This implies that the two-pass estimation would not be able to identify 

each of the risk premiums related to the MOM+REV, CRR, and JW factors.  The explanatory 

power of the FF factors is much stronger than that of other factors.11  The explanatory power of 

the CRR factors is particularly low: the factors can explain no more than 2% of the average total 

variation in the portfolio returns analyzed. 

Third, the four factor model of Carhart (1997), which uses the three FF factors and the 

MOM factor, produces beta matrices with a rank of four for the four portfolio sets other than the 

25 Size and B/M portfolios.  For the four portfolio sets, the MOM factor appears to be correlated 

with one latent factor that cannot be identified by the FF factors alone.  Adding the two REV 

factors to the FF model increases the rank of the beta matrix by one for the 25 Size and 

Momentum factors but by none for the four other portfolio sets.  Adding the REV factors to the 

Carhart model does not change the rank of the beta matrix for any portfolio set.  The REV 

factors appear to have little information about the latent factors that cannot be explained by the 

FF and MOM factors alone.             

Fourth, while the CRR factors fail to produce full rank beta matrices, they appear to be 

correlated with an additional latent factor that is not explained by the FF factors alone.  When the 

CRR factors are used in tandem with the FF factors, the rank of the beta matrix increases by one 

for four sets of portfolio returns but by none for the set of the 100 Size and B/M portfolios.  

When we add the JW factors (LAB and UPR) to the FF model, the rank of the beta matrix 

increases by one for the portfolios sorted by industry (the 30 Industrial portfolios and the 25 Size 

and B/M plus 30 Industrial portfolios).  However, when both the CRR and JW factors 

(CRR+LAB) are added to the FF model, the rank of the beta matrix increases at most by one.  If 

the CRR and JW factors are respectively correlated with two different latent factors, we should 

expect that the beta matrix corresponding to the FF, CRR, and LAB factors has a rank of five.  

Given that the beta matrix has a rank of at most four for all of the portfolios we consider, the 

CRR and LAB factors appear to be correlated with the same single latent factor that cannot be 

identified by the FF factors alone.   

We have also run some unreported tests to detect which of the five CRR (MP, UI, DEI, 

UTS, and UPR) and LAB factors, or which linear combinations amongst them, can increase the 

rank of the beta matrix.  We find the following.  First, adding any single factor to the FF model 

11Among the FF three factors, the VW factor has the strongest explanatory power.  
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generally does not increase the rank of the beta matrix.  One exception is the case in which the 

UI factor is added to the FF model to analyze the 30 Industry portfolios.  Adding the UI factor 

and one other single factor to the FF model often increases the rank of the beta matrix by one for 

the portfolios sorted by industry (the 30 Industry portfolio and the 25 Size and B/M plus 30 

Industrial portfolios).  For the 25 Size and B/M portfolios and the 25 Size and Momentum 

portfolios, adding the UI factor and two other factors to the FF model occasionally increases the 

rank of the beta matrix by one.12  These results seem to indicate that the UI factor is an important 

determinant of the rank of the beta matrix, suggesting that the FF model might be missing an 

inflation-related risk factor.  However, the UI factor alone does not have sufficient power to 

increase the rank of the beta matrix.  It does only when some other factors are also added.  

Finally, adding all of the CRR, LAB, MOM, and REV factors to the FF model increases 

the rank of the beta matrix by one or two.  This result, together with the result that adding the 

CRR and LAB factors or the MOM and REV factors to the FF model can increase the rank of the 

beta matrix by one, implies that the CRR+LAB factors and the MOM+REV factors have 

information about at most two different latent factors that cannot be identified by the FF factors 

alone.  However, the extra explanatory power of the CRR, LAB, MOM, and REV factors for 

portfolio returns is quite low.  When the factors are added to the FF model, the adjusted R-square 

increases by 2% or less.  The only exception is the case with the 25 Size and Momentum 

portfolios, in which adding all of the factors to the FF model increases the adjusted R-square by 

at most 8.3%.   

Overall, the FF model is the only model that generates full-column beta matrices for all 

of the five portfolio sets we investigate.  Most of the individual factors out of the CRR, MOM, 

REV, and LAB factors fail to identify the latent factor that cannot be explained by the FF factors 

alone.  Use of multiple empirical factors can help identify additional latent factors.  However, it 

is important to note that the corresponding beta matrix is likely to fail to have full column rank.   

Panels B and C of Table 5 report the estimation results from two subsample periods.  The 

main results from Panel B and Panel C are the same as those from Panel A.  For both subsample 

periods, the estimated rank of the FF beta matrix is three for every portfolio set, and adding the 

CRR, LAB, MOM, and REV factors to the FF model increases the rank of the beta matrix at 

most by two.  However, some observations from Panels B and C are also worth noting here.  

12 For example, the rank of the beta matrix increases by one when we add the MP, UI, and UTS factors to the FF 
model with the 25 Size and B/M portfolios and when the UI, DEI, and UPR factors are added to the FF model with 
the 25 Size and Momentum portfolios.  
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First, adding the two REV factors to the FF model often increases the rank of the beta matrix, 

especially for the second subsample period (from January 1982 to December 2011, Panel C).  

Adding both the MOM and REV factors to the FF model can increase the rank of the beta matrix 

by two.  It appears that the REV factors have become more informative for true latent factors in 

more recent years.  Second, the explanatory power of the CRR factors for portfolio returns has 

decreased over time.  For the second subsample period (Panel C), the adjusted R-squares from 

the regressions with the CRR factors alone are smaller than 1% for all five sets of portfolio 

returns.  

The MBICD estimation results reported in Table 5 show that the demeaned beta matrices 

corresponding to the FF factors have the rank of three for all of the five sets of portfolio returns 

and over both the entire sample and the two subsample periods.  Intriguingly, the demeaned beta 

matrices corresponding to the CRR factors have a rank of zero, which implies that the latent 

factors correlated with them may have constant betas over different portfolio returns.  For most 

of the portfolio sets analyzed, the demeaned beta matrices corresponding to the MOM+REV 

factors have a rank of one.  When we use all of the twelve empirical factors (FF, CRR, LAB, 

MOM, and REV), the MBICD estimates are often smaller than the MBIC estimates by one, 

indicating that the betas corresponding to a latent factor may be constant over different portfolios.  

 

4.2. Results from Monthly Individual Stock Returns 

In this subsection, we report the estimation results obtained using monthly individual stock 

returns and the same empirical factors used in the previous subsection.  We use the data from 

January 1952 to December 2011.  Again, whenever we estimate a model using the JW factors, 

we use the data from March 1959.  As in the previous subsection, we also divide the entire 

sample period into two 30-year subsample periods.  In order to make sure we use a sufficiently 

large number of time series observations for each stock, we only choose those with at least two 

thirds of T (2T/3), where T is the sample period.  The number of individual stocks for the entire 

sample period is 614.  The numbers of individual stocks for the two subsample periods are 781 

and 2,268.  The individual return data cover large numbers of cross-sectional units, which are 

often greater than the numbers of time series observations.  Our simulation results indicate that 

the MBIC and MBICD estimators are appropriate for the analysis of such data.  Since the data 

are unbalanced, we use the cross-sectional average of the time series observations for the T in the 

MBIC and MBICD estimators. 
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The estimation results are reported in Table 6.  We find that the beta matrix 

corresponding to the FF factors has full column rank for the entire sample period and the first 

subsample period.  For the second subsample period, we find that the FF beta matrix has 

deficient rank.  This result could be explained by the fact that the explanatory power of the 

empirical factors has dramatically decreased in the second subsample period: their explanatory 

power during the second subsample period is almost half of their power during the first 

subsample period.  Weak factors are hard to detect.  Thus, the rank estimates are likely to be 

downward biased ones when some factors have very weak explanatory power. 

Adding the MOM, REV, CRR, or JW factors individually to the FF model does not 

increase the rank of the beta matrix for any sample period.  Adding both the MOM and REV 

factors to the FF model increases the rank of the beta matrix by one for the entire sample period.  

In contrast, adding the CRR or/and JW factors to the FF model does not increase the rank for any 

sample period.  Adding all of the MOM, REV, CRR, and LAB factors to the FF model increases 

the beta rank by one when the data over the entire sample period are used.  The twelve empirical 

factors we consider (FF, MOM, REV, CRR, and LAB) appear to be correlated with four latent 

factors for the entire sample and the first subsample periods and with three latent factors for the 

second subsample period.  The estimated ranks of beta matrices are smaller for individual stocks 

than those for portfolios, especially for the second subsample period.  Again, this may be related 

to the fact that the empirical factors have weaker explanatory power for monthly individual stock 

returns than for portfolio returns.  For example, the twelve empirical factors together explain at 

most 33.6% of the variation in individual monthly stock returns, while they explain at least 

60.0% and often more than 75% of the variation in monthly portfolio returns.   

Overall, the results in Table 6 are consistent with the notion that one of the four latent 

factors that was important in earlier years may have become less important in more recent years.  

This may have happened because idiosyncratic risks of individual stocks have increased over 

time.  The results in Tables 5 and 6 support this scenario.  Table 6 indicates that the explanatory 

power of the twelve empirical factors for individual stock returns is substantially weaker for the 

second subsample period.  In contrast, Table 5 shows that the explanatory power of the same 

empirical factors for portfolio returns has been only mildly decreasing over time.  

Similarly to Table 5, Table 6 also shows that the MBICD estimates are often smaller than 

the MBIC estimates by one during the entire sample and first subsample periods.  Even for 

individual stock returns, some latent factors appear to have constant or near-constant betas.  

However, for the second subsample period, the MBICD estimates are all the same as the MBIC 
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estimates, indicating that the latent factors that we identified during the second subsample period 

have non-constant betas. 

 

4.3. Results from Quarterly Returns 

For sensitivity analysis, we re-estimate the above factor models using quarterly data.  The 

quarterly portfolio returns used are again the 25 Size and B/M portfolios, 30 Industrial portfolios, 

the combination of the 25 Size and B/M portfolios and the 30 Industry portfolios, the 25 Size and 

Momentum portfolios, and the 100 Size and B/M portfolios.  The quarterly individual stock 

returns consist of the same 614 individual stocks used in the monthly analysis for the entire 

sample period.  We use the data from the first quarter of 1952 to the fourth quarter of 2011 (T = 

240).  The results from the estimation with the quarterly returns are presented in Table 7.  

The estimation results are very similar to those from the analyses of monthly portfolio 

returns (Panel A of Table 5) and individual stock returns (Table 6).  For the quarterly portfolio 

returns, we again find that the FF beta matrices have full column rank for all of the five portfolio 

sets.  The MBICD estimation results suggest that the demeaned beta matrices corresponding to 

the FF factors also have a rank of three for every portfolio set we consider.  Adding the MOM 

factor to the FF model increases the rank of the beta matrix to four only for the 25 Size and 

Momentum portfolios, while adding the REV or MOM+REV factors does increase the rank by 

one for the portfolio sets other than the 100 Size and B/M portfolios.  It appears that the REV 

factors are more informative for the analysis of quarterly portfolio returns, while the MOM 

factor is more informative for monthly portfolio returns.  Adding the CRR or JW factors, or 

adding both the CRR and JW factors to the FF model, increases the rank of the beta matrix only 

by one for the portfolios sorted by industry (the 30 Industrial portfolios and the combination of 

the 25 Size and B/M and 30 Industry portfolios).  When we add the CRR and JW factors to the 

model with the FF and MOM+REV factors, the rank of the beta matrix increases to five for the 

portfolios sorted by industry and to four for the other portfolios.  It appears that the CRR+LAB 

factors are more informative for portfolios sorted by industry than for other portfolios.  For the 

100 Size and B/M portfolios, adding either the MOM+REV or CRR+LAB factors to the FF 

model does not increase the rank of the beta matrix, while adding all of the empirical factors 

together increases the rank by one.  The extra explanatory power of the CRR, LAB, MOM, and 

REV factors for quarterly portfolio returns is quite low.  When the factors are added to the FF 

model, the adjusted R-squares increase by less than 2% percent for four of the five portfolio sets.  

For the 25 Size and Momentum portfolios, the adjusted R-square increases by 6.2%.       
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For quarterly individual stock returns, we find a deficient rank from the FF beta matrix.  

Adding any of the MOM, REV, CRR, and JW factors to the FF model yields the beta matrix 

with a rank of three.  When the CRR+LAB factors are added to the FF model, we find the rank 

of the corresponding beta matrix increases to four.  Overall, we find evidence that there are four 

(linear combinations of) latent factors correlated with the empirical factors we consider to 

explain the quarterly individual stock returns.   

Next, we consider seven factor models discussed in Lewellen, Nagel, and Shanken 

(2010).  The models are the CAPM and the CCAPM and the models of Lettau and Ludvigson 

(2001, LL); Yogo (2006, Y); Santos and Veronesi (2006, SV); Li, Vassalou, and Xing (2006, 

LVX); and Lustig and Van Nieuwerburgh (2004, LVN).  Except for the CAPM factor (VW), all 

of the empirical factors used by these models are observed only quarterly.  We refer to all these 

factors as quarterly macro factors.  We also consider the quarterly FF, MOM, REV, CRR, and 

LAB factors for comparison.   

The estimation results with quarterly portfolio returns and quarterly individual stock 

returns are reported in Table 8.13  The main results from the MBIC estimation with quarterly 

portfolio returns are the following.  First, for every macro factor model, the beta matrix has a 

rank of one.  This result implies that the two-pass estimation could not successfully identify the 

risk premiums related to the quarterly macro factors.  The adjusted R-squares for the models with 

no VW component (CCAPM, LL, and LVX) are very small (smaller than 4%), while the 

adjusted R-squares from the models with the VW component (Y and SV) are very similar to 

those from the CAPM.  

Second, when the LL factors are added to the FF model, the rank of the beta matrix 

increases by one for three of the five portfolio sets (the 30 Industrial portfolios, the 25 Size and 

B/M plus 30 Industrial portfolios, and the 25 Size and Momentum portfolios).  When the SV or 

LVX factors are added to the FF model, the rank of the beta matrix increases by one only for the 

25 Size and Momentum portfolios.  When we add all of the macro quarterly factors to the FF 

model, the rank of the beta matrix increases by one for the three portfolio sets, while the rank 

does not increase at all for the other two portfolio sets.  This result indicates that the quarterly 

13 We do not report the estimation results for the LVN model because the time series data on the MYMO (housing 
collateral ratio) factor are available only up to the first quarter of 2005.  From the estimation with the data up to the 
first quarter of 2005, we found that the beta matrices corresponding to the LVN three factors have the rank of one 
for all of the five portfolio sets and individual stock returns.  In addition, adding the three LVN factors to the FF 
model does not increase the rank of the beta matrix.   
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macro factors are correlated with at most one single latent factor that cannot be identified by the 

FF factors alone.   

Third, the additional latent factor identified by the quarterly macro factors appears to be 

also correlated with the CRR+LAB factors.  When the MOM+REV factors are added to the 

model with the quarterly macro factors and the FF factors, the rank of the beta matrix increases 

by one for every portfolio set except for the 25 Size and Momentum portfolios.  However, when 

the CRR+LAB factors are added to the same model, the rank of the beta matrix does not increase 

for any set of portfolios.  These results show that the latent factor captured by the MOM+REV 

factors is different from the latent factor captured by the macro quarterly factors.  However, the 

CRR+LAB and the quarterly macro factors appear to capture the same latent factor that cannot 

be identified by the FF factors alone. 

Fourth, Tables 7 and 8 show that for any portfolio set, adding the CRR+LAB and 

MOM+REV factors and the nine quarterly macro factors to the FF model increases the adjusted 

R-square by no more than 6.2% (= 92.8% - 86.5%, for the 25 Size and Momentum portfolios).  

In contrast, adding the nine quarterly macro factors to the model with the FF, MOM, REV, CRR, 

and LAB factors increases the adjusted R-square at most by 0.5% (= 67.2% - 66.7%, for the 30 

Industrial portfolios).  It appears that the quarterly macro factors have only a limited explanatory 

power for portfolio returns.   

Fifth, the MBICD estimation results from monthly and quarterly portfolio returns show 

similar patterns.  For the models without the VW factor (the CCPAM, LL, and LVX models), the 

MBICD estimates are all equal to zero.14  This indicates that the betas corresponding to the 

quarterly macro factors have little cross-sectional variation.  For the models using the three FF 

factors and the quarterly macro factors, the MBICD estimates are equal to four for the 25 Size 

and B/M plus 30 Industrial portfolios but equal to three for all other portfolio sets.  When we add 

the quarterly macro factors to the model with the FF, MOM, REV, CRR, and LAB factors, the 

MBICD estimates are equal to five for the 25 Size and B/M plus 30 Industrial portfolios but 

equal to four for other portfolio sets.   

Some findings from the quarterly individual stock returns are different from those from 

the quarterly portfolio returns.  First, the MBIC estimates of the beta matrices corresponding to 

the CCAPM and LL models equal zero, while the MBIC rank estimate for the SV model is two.  

Second, adding the quarterly macro factors individually to the FF model does not increase the 

14Using the data up to the second quarter of 2005, we found that the demeaned beta matrix of the LV model also has 
zero rank.   
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beta rank.  Third, adding all the quarterly macro factors to the FF model increases rank by one.  

This implies that the macro quarterly factors are correlated with a latent factor that cannot be 

identified by the FF factors alone.  This latent factor is different from the latent factor correlated 

with the MOM+REV, CRR, and JW factors.  Fourth, when all of the empirical factors (the FF, 

CRR, MOM+REV, JW, and quarterly macro factors) are used, the rank of the beta matrix equals 

five.  This finding is consistent with the notion that there are five latent factors that are important 

to explain the quarterly individual stock returns. 

 

4.4. Summary of Empirical Results 

The main results from our analysis of actual return data can be summarized as follows.  First, the 

twenty-six empirical factors we have considered can identify at most five latent factors in the 

U.S. stock returns.  Second, our estimation results suggest that the CAPM factor (VW) and the 

two factors (SMB and HML) added by FF are correlated with three linearly independent latent 

factors, at least in portfolio returns.  Third, the MOM and REV factors appear to be correlated 

with one additional latent factor that cannot be identified by the three FF factors alone.  Fourth, 

there is some evidence that some linear combinations of macro factors may be correlated with 

another latent factor not explained by the FF and MOM+REV factors.  Fifth and finally, the FF 

model is the only multifactor model that persistently generates full-column rank beta matrices for 

portfolio returns.  For individual stock returns, the FF beta matrices have ranks of two or three 

depending on sample periods and data frequencies.   

 

5. Concluding Remarks 

In this paper, we have estimated the ranks of the beta matrices corresponding to many empirical 

factors that have been used in the literature.  The estimation method used in this paper can be 

used for the data with a large number of asset returns.  We develop two modified versions of the 

BIC estimator proposed by Cragg and Donald (1997).  The estimators can be used for both data 

with large and small numbers of asset returns, as long as the number of time series observations 

on each return is sufficiently large.  Our simulation results provide promising evidence for the 

estimators.  Recent studies have shown that some factor loadings may have little cross-sectional 

variations.  Our estimation method can also be used to detect such loadings.   

Our empirical analysis shows that the three factors in the augmented CAPM of Fama and 

French (1993, FF) have strong explanatory power for the U.S. individual stock returns and 

portfolio returns.  The three factors appear to be correlated with three linearly independent latent 
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factors, at least in portfolio returns.  If the number of linearly independent latent factors can be 

viewed as representing the number of different sources of risk, our results suggest that the co-

movement in the U.S. stock returns is driven by at least three different types of risk.  We also 

have considered many other empirical factors that have been used in the literature.  These factors 

appear to have some power to identify one or two additional latent factors that the three FF 

factors alone are not able to identify.  However, their additional explanatory power for returns is 

limited, conditional on the FF factors.  

Bai and Ng (2002) and Onatski (2010) have developed the estimation methods that can 

estimate the number of latent factors without using empirical factors.  Using their methods, Bai 

and Ng (2002) and Onatski (2012) have found evidence that two latent factors drive the U.S. 

individual stock returns.  In contrast, our results suggest two or three more latent factors in the 

individual stock returns.  These contradictive results can be explained as follows.  The estimation 

results of Bai and Ng (2002) and Onatski (2012) are obtained from principal components 

analysis of stock returns.  As Onatski (2012) noted, principal components analysis may 

underestimate the number of latent factors and provide poor estimates of latent factors when 

some latent factors have only weak explanatory power for response variables.  An advantage of 

our rank estimation method is that it utilizes the information from empirical factors to identify 

the number of latent factors.  Our simulation and empirical results show that estimating the rank 

of the beta matrix is a more powerful way to identify the presence of weak factors. 
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Appendix 

Let 1 2( , ,..., )TF f f f ′= , and let X  and Ε  be the T N×  matrices of individual returns and their 

error components, respectively.  Also, let 11 1N N NP N − ′=  and N N NQ I P= − , where 1N is the 1N ×  

vector of ones.  Define TP  and TQ  using the 1T ×  vector of ones (1T ).  Then, 11 0N N NQ ×= , 

0N N N NQ P ×= , N N NQ Q Q= , and N N NP P P= .  The TQ  and TP  matrices have the same properties.  

With this notation, model (3) can be written as 1TX Fα′ ′= + Β +Ε .  If we pre-multiply this 

matrix equation by TQ , we have T T TQ X Q F Q′= Β + Ε .  In addition,  

 
1 1

1ˆ ˆ ˆ T T T T
xf ff

X Q F F Q F Q F F Q F
T T T T

− −
− ′ ′ ′ ′Ε   Β = Σ Σ = = Β+   

   
. (A1) 

 Under Assumption B, ( ) d
Nrank Q B r= .  Thus, there exist dN r×  and dK r×  matrices, 

dA and dS , such that N d dQ A S ′Β =  and ( ) ( ) d
d drank A rank S r= = .  Let 1( ) ( )d d d d dP A A A A A−′ ′=  

and ( )dQ A  = ( )N dI P A− .  Similarly, there exist N r×  and K r×  matrices, A  and S , such that 

AS ′Β = , ( ) ( )rank A rank S r= = , and S is a finite matrix.  With this notation, we can rewrite 

(A1) as 

 

1

1 1
1

1

ˆ [ ( ) ( )]

( ) ( )

ˆ ( ) .

N T T
N d d d d

N T N TT T
d d d d d d

N T T
d d d

Q Q F F Q FQ A S Q A P A
T T

Q Q F Q Q FF Q F F Q FA S A A A Q A
T T T T

Q Q F F Q FA S Q A
T T

−

− −
−

−

′ ′Ε  ′Β = + +  
 

 ′ ′′ ′Ε Ε   ′ ′ ′= + +    
     

′ ′Ε  ′≡ +  
 

 (A2) 

Similarly, we have  

 

1 1
1

1

ˆ ( ) ( )

ˆ ( ) .

T T T T

T T

Q F F Q F Q F F Q FA S A A A Q A
T T T T

Q F F Q FAS Q A
T T

− −
−

−

 ′ ′ ′ ′Ε Ε   ′ ′ ′Β = + +    
     

′ ′Ε  ′≡ +  
 

 (A3) 

The following three Lemmas are used to prove Theorem 1. 

 

Lemma 1: Under Assumptions A – D, we have the following results: 

(i)  (1)d
p

A O
N

= ; (ii) 
1( ) (1)d d d N T

p
A A A Q Q F O

T

−′ ′ ′Ε
= ; (iii) 

( ) (1)d N T
p

Q A Q Q F O
NT

′Ε
= ; 
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(iv) (1)p
A O
N

= ; (v) 
1( ) (1)T

p
A A A Q F O

T

−′ ′ ′Ε
= ; 

( ) (1)T
p

Q A Q F O
NT
′Ε

= . 

 

 Proof of Lemma1:  We here prove only (i), (ii), and (iii) because (iv), (v), and (vi) can be 

proven in the same way by dropping NQ  and replacing dA and dS  with A and S, respectively. By 

Assumption B, 

 (1) (1)N NQ Qtrace O O
NN
′Β Β Β = = = 

 
. 

Thus, (i) holds because dS  is a finite matrix, and, therefore, 

 ( )
1

1( ) (1)d N d d d N
d d d

A Q S S S Q S S S O
N N N

−
−′Β Β ′= ≤ = . (A4) 

By Assumptions A, C and D, 

 1 (1)T
p

F f O
T
′

= = ; 

 
( )22 2

1 1
1 1

1 1 1 (1)
N T
i t it N TT

i t it pO
NT NNT T

ε
ε= =

= =

Σ Σ′Ε  = = Σ Σ = 
 

; 

 
2

1 1 1
1 (1)N T T

i t s it is t s p
F f f O

NTNT
ε ε= = =

′Ε ′= Σ Σ Σ = . 

Therefore, we have  

 

1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 112 2 1 1 2 2 (1).

N T

T T N N N N T T

T T N N N N T T

T T
T T p

Q Q F
NT

F F F F
T N NTNT

F F F F
T N N TNT NT NT NT

FF FF O
TNT T NT NT NT

′Ε

′ ′ ′ ′ ′ ′ ′ ′= Ε − Ε − Ε + Ε

′ ′ ′ ′ ′ ′ ′ ′≤ Ε + Ε + Ε + Ε

′ ′′ ′ ΕΕ Ε′ ′= + Ε ≤ + =

 (A5) 

By (A4) and (A5), the result (ii) holds because 

 
11( ) (1)d d d N T d d d N T

p
A A A Q Q F A A A Q Q F O

NT N NT

−−′ ′ ′ ′ ′Ε Ε ≤ = 
 

. 

Finally, (iii) holds because 
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2

2

( ) ( )

(1).

d N T T N d N T

T N N T N T
p

Q A Q Q F F Q Q Q A Q Q Ftrace
NTNT

F Q Q Q Q F Q Q Ftrace O
NT NT

′ ′ ′Ε Ε Ε =   

′ ′ ′Ε Ε Ε ≤ = =  

 

 

Lemma 2 (Ahn and Horenstein, 2013):  If A and B are p p×  positive semi-definite matrices,  

( ) ( )j jA A Bψ ψ≤ + , 1,...,j p= . 

 

Lemma 3 (Rao, 1973, p. 68): Suppose that two matrices A and B are symmetric of order p.  

Then, 

( ) ( ) ( )j j p j jA B A Bψ ψ ψ′ ′+ − + ≤ + , 1j j p′+ ≥ + . 

 

Remark: Although the lemma in Rao (1973, p. 68) looks different from Lemma 3, they 

are the same.  The former lemma is written with the eigenvalues ordered from the largest to 

smallest and the latter with the eigenvalues ordered from the smallest to the largest.   

 

Proof of Theorem 1:  We will first derive the asymptotic properties of the eigenvalues of 

ˆ ˆ ˆ /ff NQ N′Σ Β Β . The eigenvalues of 1/2 1/2ˆ ˆ ˆ ˆ( / )ff N ffQ N′Σ Β Β Σ  are the same as those of ˆ ˆ ˆ /ff NQ N′Σ Β Β .  

Thus, we consider the properties of the former eigenvalues. By (A2), we have 

 

1/2 1/2
1/2 1/2

1/2 1/2 1/2 1/2
2

ˆ ˆ ˆ ˆ ˆ ˆ( )ˆ ˆ

ˆ ˆ ( )ˆ ˆ ˆ ˆ .

ff N ff N N
ff ff

d d d d T N d N T
ff ff ff ff

Q Q Q
N N

S A A S F Q Q Q A Q Q F
N NT

− −

′Σ Β ΒΣ ′Β Β
= Σ Σ

′ ′ ′ ′Ε Ε
= Σ Σ +Σ Σ

 

By Lemmas 2 and 3, for 1, ... ,j K= , 

1/2 1/2

1/2 1/2

1/2 1/2 1/2 1/2
2

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ( )ˆ ˆ ˆ ˆ .

d d d d
j ff ff

ff N ff
j

d d d d T N d N T
j ff ff K ff ff

S A A S
N

Q
N

S A A S F Q Q Q A Q Q F
N NT

ψ

ψ

ψ ψ − −

 ′ ′
Σ Σ 
 

 ′Σ Β ΒΣ
≤   

 
 ′ ′ ′ ′Ε Ε ≤ Σ Σ + Σ Σ   

  

 (A6) 

Note that  
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1/2 1/2
2

1/2 1/2
1 2

1/2 1/2
2

2 2
1/2 1/2

( )ˆ ˆ

( )ˆ ˆ

( )ˆ ˆ

( ) ( )1 1ˆ ˆ

T N d N T
K ff ff

K T N d N T
j j ff ff

T N d N T
ff ff

d N T d N T
ff ff

F Q Q Q A Q Q F
NT

F Q Q Q A Q Q F
NT

F Q Q Q A Q Q Ftrace
NT

Q A Q Q F Q A Q Q F
T TNT NT

ψ

ψ

− −

− −
=

− −

− −

′ ′Ε Ε Σ Σ 
 

′ ′Ε Ε ≤ Σ Σ Σ 
 

′ ′Ε Ε = Σ Σ 
 

′ ′Ε Ε
≤ Σ ≤ Σ

2

1 1(1) ,p pO O
T T

 = × =  
 

 (A7) 

because of Lemma 1(iii) and the fact that ˆ (1)ff pOΣ =  by Assumption A.  (A6) and (A7) imply 

 
1/2 1/2

1/2 1/2 1/2 1/2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 1ˆ ˆ ˆ ˆ .ff N ffd d d d d d d d

j ff ff j j ff ff p

QS A A S S A A S O
N N N T

ψ ψ ψ
 ′   Σ Β ΒΣ′ ′ ′ ′  Σ Σ ≤ ≤ Σ Σ +                

 (A.8) 

Since ˆ( ) ( ) d
d d drank A S rank A r′ ≤ = , for 1 dj K r≤ ≤ − , ( )ˆ ˆ / 0j d d d dS A A S Nψ ′ ′ = .  Thus, for 1 ≤j≤K 

- rd, 

 
1/2 1/2ˆ ˆ ˆ ˆ 10 ff N ff

j p

Q
O

N T
ψ

 ′Σ Β ΒΣ  ≤ ≤       
.   

Lemma 1(ii) implies ˆlimT d dp S S→∞ =  because 

 
11( )lim 0d d d N T T

T
A A A Q Q F F Q Fp

T T

−−

→∞

′ ′ ′ ′Ε   = 
 

. 

Thus, for 1dK r j K− + ≤ ≤ , 

 

1/2 1/2 1/2 1/2

1/2 1/2
1/2 1/2

ˆ ˆ
ˆ ˆlim

ˆ ˆ ˆ ˆ
lim ,

N d d d d
j ff ff T j ff ff

ff N ff N
T j j ff ff

Q S A A Sp
N N

Q Qp
N N

ψ ψ

ψ ψ

→∞

→∞

 ′ ′ ′Β Β Σ Σ = Σ Σ       
 ′Σ Β ΒΣ ′Β Β ≤ ≤ Σ Σ       

  

which implies 

 
1/2 1/2

1/2 1/2
ˆ ˆ ˆ ˆ

lim 0ff N ff N
T j j ff ff

Q Qp
N N

ψ ψ→∞

 ′Σ Β ΒΣ ′Β Β = Σ Σ >       
. 

By the same procedure, we can obtain the same results for the eigenvalues of ˆ ˆ ˆ /ff N′Σ Β Β . 
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Proof of Theorem 2:  We here show the consistency of the MBICD estimator.  Let 

( )m p = ( 1 )( )N p K p− − − .  Let us denote the MBICD estimator by 2r .  Note that for all N (even 

if N →∞ ), 

 ( )2 2
2

( ) ( ) 1 11 1 ( ) ( )0
d d

dm r m r r rK r K r
N N N

 − + + = − − − − − < >  
   

 

 , (A10) 

if 2 ( ) dr r> < .  For 2r  to be greater than dr , it must be the case that 2, ( )d
TD r  - 2, 2( )TD r > 0.  

Thus, 2Pr( )dr r> ≤ 2, 2, 2̂Pr[ ( ) ( ) 0]d
T TD r D r− > , but as T →∞ , 

 
2

2, 2, 2

1/2 1/2 2 2
1

Pr ( ) ( ) 0

ˆ ˆ ( ) ( )ˆ ˆ ˆPr ( ) 0 0,
d

d
T T

d
K r N
j K r j ff ff

D r D r

Q m r m rT w T
N Nεψ σ−

= − +

 − > 
  ′Β Β −

= Σ Σ Σ + > →  
   







 (A11) 

because ( )2

1/2 1/2
1

ˆ ˆ ˆ ˆ /
dK r

j k r j ff N ffT Q Nψ−
= − + ′×Σ Σ Β ΒΣ



 = (1)pO  by Theorem 1, 2 2ˆ pε εσ σ→  by Assumption 

C(ii), and 2( )( ( ) ( )) /dw T m r m r N− → −∞  by (A10).  Therefore, 2Pr( ) 0dr r> → as T →∞ .  

Similarly, for 2
dr r< ,  

 
2

2, 2, 2

1/2 1/2 2 2
1

Pr[ ( ) ( ) 0]

ˆ ˆ ( ) ( )( )ˆ ˆ ˆPr 0 0,d

d
T T

d
K r N

j ff ffj K r

D r D r

Q m r m rw T
N T Nεψ σ−

= − +

− >

  ′Β Β −
= −Σ Σ Σ + > →  

   







 (A12) 

 

Because ( ) / 0w T T → , ( ) ( )2 21/2 1/2 1/2 1/2
1 1

ˆ ˆ ˆ ˆ / / 0d d
K r K r

j ff N ff p j ff N ffj K r j K r
Q N Q Nψ ψ− −

= − + = − +
′ ′Σ Σ Β ΒΣ → Σ Σ Β ΒΣ >  . 

(A11) and (A12) imply that the MBICD estimator is consistent.  The consistency of the MBIC 

estimator can be shown similarly.  
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Table 1: TC Estimation of Beta Matrix from Five Empirical Factors 
 

Reported are the percentages (%) of correct estimation by the TC1 estimator from 1,000 simulated data sets.  The 
percentages (%) of under- and over-estimation by each estimator are reported in parentheses (•,•).  Data are drawn 
by 1

K
it j ij jt itx fβ ε== Σ + ; 2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h vε φ ξ ξ ξ ξ φ= + + + − , where K = 5, 0.2φ = , and jtf  (j = 1, ... , 
K),  j th ′ , j iξ ′  ( 1, 2j′ = ) and itv are all randomly drawn from (0,1)N . For the beta matrix Β , we draw an N r×  
random matrix gΒ  such that its first column equals the vector of ones and the entries in the other columns are drawn 
from (0,1)N .  We also draw a random K K×  positive definite matrix, compute the first r orthonormalized 
eigenvectors of the matrix, and set a K r×  matrix C  using the eigenvectors.  1/2

g C′Β = Β Λ , where Λ = 

1( ,..., )rdiag λ λ .  The rank of the beta matrix equals one or three (r = 1, 3).  TC1 refers to the Testing Criterion 
estimator of Cragg and Donald (1997), which is computed under the assumption that the itε  are i.i.d. over time (but 
cross-sectionally correlated).  

 
 Panel I: K = 5, r = 1, 1λ λ=  Panel II: K = 5, r = 3, 1 2 3λ λ λ λ= = =  

λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=60 
N =25 TC1 5.1% 

(0.0, 94.9) 
4.2% 

(0.0, 95.8) 
3.5% 

(0.0, 96.5) 
44.0% 

(7.3, 48.7) 
38.1% 

(1.6, 60.3) 
31.5% 

(0.1, 68.4) 

N =50 TC1 0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

T=120 

N =25 TC1 50.0% 
(0.1, 50.0) 

47.3% 
(0.0, 52.7) 

45.7% 
(0.0, 54.3) 

69.0% 
(8.1, 22.9) 

69.8% 
(2.1, 28.1) 

67.4% 
(0.0, 32.6) 

N =50 TC1 0.1% 
(0.0, 99.9) 

0.1% 
(0.0, 99.9) 

0.1% 
(0.0, 99.9) 

8.7% 
(0.0, 91.3) 

7.3% 
(0.0, 92.7) 

6.7% 
(0.0, 93.3) 

N=100 TC1 0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

T=240 

N =25 TC1 78.9% 
(0.0, 21.1) 

78.1% 
(0.0, 21.9) 

77.8% 
(0.0, 22.2) 

87.8% 
(0.8, 11.4) 

87.2% 
(0.0, 12.8) 

86.5% 
(0.0, 13.5) 

N =50 TC1 26.7% 
(0.0, 73.3) 

26.4% 
(0.0, 73.6) 

26.1% 
(0.0, 73.9) 

55.0% 
(0.0, 45.0) 

52.7% 
(0.0, 47.3) 

51.6% 
(0.0, 48.4) 

N =100 TC1 0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.8% 
(0.0, 99.2) 

0.6% 
(0.0, 99.4) 

0.4% 
(0.0, 99.6) 

N=200 TC1 0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0.0, 100) 

0.0% 
(0, 100) 
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Table 2: BIC Rank Estimation of Beta Matrix from Five Empirical Factors 
 

Reported are the percentages (%) of correct estimation by the BIC1 and MBIC estimators from 1,000 simulated data 
sets.  The percentages (%) of under- and over-estimation by each estimator are reported in parentheses (•,•).  Data 
are drawn by 1

K
it j ij jt itx fβ ε== Σ + ; 2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h vε φ ξ ξ ξ ξ φ= + + + − , where K = 5, 0.2φ = , and jtf  
(j = 1, ... , K),  j th ′ , j iξ ′  ( 1, 2j′ = ) and itv are all randomly drawn from (0,1)N . For the beta matrix Β , we draw an 
N r×  random matrix gΒ  such that its first column equals the vector of ones and the entries in the other columns are 
drawn from (0,1)N .  We also draw a random K K×  positive definite matrix, compute the first r orthonormalized 
eigenvectors of the matrix, and set a K r×  matrix C  using the eigenvectors. 1/2

g C′Β = Β Λ , where Λ = 

1( ,..., )rdiag λ λ .  The rank of the beta matrix equals one or three (r = 1, 3).  BIC1 refers to the Bayesian Information 
Criterion (BIC) estimator of Cragg and Donald (1997), which is computed under the assumption that the itε are i.i.d. 
over time (but cross-sectionally correlated). MBIC refers to the BIC estimator computed under the assumption that 
the itε are i.i.d. over both time and individual response variables.  The criterion function of the MBIC estimator uses 
T0.2 instead  of ln(T).  
 

 Panel I: K = 5, r = 1, 1λ λ=  Panel II: K = 5, r = 3, 1 2 3λ λ λ λ= = =  
λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=60 

N=25 
BIC1 55.6% 

(41.4, 4.8) 
72.7% 

(22.5, 4.8) 
87.5% 

(4.6, 7.9) 
2.3% 

(97.7, 0.0) 
11.9% 

(87.9, 0.2) 
45.2% 

(54.5, 0.3) 

MBIC 33.9% 
(65.9, 0.2) 

70.1% 
(29.7, 0.2) 

97.1% 
(2.7, 0.2) 

1.9% 
(98.1, 0.0) 

13.0% 
(86.9, 0.1) 

56.8% 
(43.0, 0.2) 

N=30 
BIC1 70.4% 

(15.1, 14.5) 
73.3% 

(6.1, 20.6) 
73.1% 

(1.0, 25.9) 
13.3% 

(86.5, 0.2) 
31.9% 

(67.6, 0.5) 
66.3% 

(30.7, 3.0) 

MBIC 37.5% 
(62.4, 0.1) 

72.4% 
(27.5, 0.1) 

97.7% 
(2.1, 0.2) 

1.8% 
(98.2, 0.0) 

15.9% 
(84.1, 0.0) 

65.9% 
(34.1, 0.0) 

N =36 
BIC1 43.5% 

(1.8, 64.7) 
38.1% 

(0.3, 61.6) 
32.3% 

(0.0, 67.7) 
43.1% 

(54.1, 2.8) 
64.3% 

(29.8, 5.9) 
81.7% 

(5.7, 12.6) 

MBIC 35.9% 
(64.1, 0.0) 

74.9% 
(25.0, 0.1) 

98.7% 
(1.2, 0.1) 

2.3% 
(97.7, 0.0) 

17.6% 
(82.4, 0.0) 

71.6% 
(28.4, 0.0) 

N =40 
BIC1 14.3% 

(0.0, 85.7) 
12.2% 

(0.0, 87.8) 
9.1% 

(0.0, 90.9) 
60.2% 

(25.7, 14.1) 
64.9% 

(10.7, 24.4) 
62.5% 

(1.3, 36.2) 

MBIC 36.1% 
(63.9, 0.0) 

74.7% 
(25.3, 0.0) 

99.4% 
(92.3, 0.0) 

1.5% 
(98.5, 0.0) 

18.1% 
(81.9, 0.0) 

76.0% 
(23.9, 0.1) 

N =50 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
7.3% 

(0.0, 92.7) 
4.6% 

(0.0, 95.4) 
3.0% 

(0.0, 97.0) 

MBIC 38.3% 
(61.7, 0.0) 

77.9% 
(22.1, 0.0) 

99.3% 
(0.7, 0.0) 

1.5% 
(98.5, 0.0) 

21.2% 
(78.8, 0.0) 

82.0% 
(18.0, 0.0) 

N =100 
BIC1 0.0% 

(100, 0.0) 
0.4% 

(99.6, 0.0) 
5.5% 

(94.5, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBIC 37.0% 
(63.0, 0.0) 

88.2% 
(11.8, 0.0) 

99.9% 
(0.1, 0.0) 

7.8% 
(92.2, 0.0) 

28.0% 
(72.0, 0.0) 

93.5% 
(6.5, 0.0) 

N=200 
BIC1 0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.4% 

(99.6, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBIC 37.7% 
(62.3, 0.0) 

90.6% 
(9.4, 0.0) 

100% 
(0.0, 0.0) 

13.0% 
(86.9, 0.1) 

38.1% 
(61.9, 0.0) 

98.3% 
(1.7, 0.0) 
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Table 2 continued...  
 

 Panel I: K = 5, r = 1, 1λ λ=  Panel II: K = 5, r = 3, 1 2 3λ λ λ λ= = =  
λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=120 

N=25 
BIC1 26.8% 

(72.1, 0.0) 
65.3% 

(34.7, 0.0) 
98.1% 

(1.9, 0.0) 
0.1% 

(99.9, 0.0) 
9.6% 

(90.4, 0.0) 
60.9% 

(39.1, 0.0) 

MBIC 77.3% 
(22.7, 0.0) 

97.5% 
(2.5, 0.0) 

100% 
(0.0, 0.0) 

20.1% 
(79.9, 0.0) 

64.5% 
(35.5, 0.0) 

95.5% 
(4.5, 0.0) 

N=50 
BIC1 81.6% 

(18.2, 0.3) 
98.3% 

(1.4, 0.3) 
99.7% 

(0.0, 0.3) 
18.4% 

(81.6, 0.0) 
68.6% 

(31.4, 0.0) 
97.7% 

(2.3, 0.0) 

MBIC 89.5% 
(10.5, 0.0) 

99.8% 
(0.2, 0.0) 

100% 
(0.0, 0.0) 

33.1% 
(66.9, 0.0) 

86.9% 
(13.1, 0.0) 

99.7% 
(0.3, 0.0) 

N=60 
BIC1 95.3% 

(3.8, 0.0) 
98.9% 

(0.0, 1.1) 
98.6% 

(0.0, 1.4) 
46.0% 

(53.9, 0.1) 
88.8% 

(11.0, 0.2) 
99.4% 

(0.3, 0.3) 

MBIC 92.2% 
(7.8, 0.0) 

99.8% 
(0.2, 0.0) 

100% 
(0.3, 0.0) 

37.7% 
(62.3, 0.0) 

92.5% 
(7.5, 0.0) 

99.8% 
(0.2, 0.0) 

N=75 
BIC1 75.3% 

(0.0, 24.7) 
73.8% 

(0.0, 26.2) 
72.6% 

(0.0, 27.4) 
88.5% 

(8.8, 2.7) 
96.0% 

(0.4, 3.6) 
95.2% 

(0.0, 4.8) 

MBIC 93.4% 
(6.6, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 

44.7% 
(55.3, 0.0) 

94.4% 
(5.6, 0.0) 

100% 
(100, 0.0) 

N=80 
BIC1 43.0% 

(0.0, 57.0) 
42.0% 

(0.0, 58.0) 
40.7% 

(0.0, 59.3) 
88.4% 

(2.3, 9.3) 
88.1% 

(0.0, 11.9) 
86.4% 

(0.0, 13.6) 

MBIC 93.2% 
(6.8, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 

46.9% 
(53.1, 0.0) 

96.0% 
(4.0, 0.0) 

100% 
(0.0, 0.0) 

N=100 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
3.7% 

(0.0, 96.3) 
3.2% 

(0.0, 96.8) 
2.7% 

(0.0, 97.3) 

MBIC 96.0% 
(4.0, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

52.9% 
(47.1, 0.0) 

97.8% 
(2.2, 0.0) 

100% 
(0.0, 0.0) 

N=200 
BIC1 0.1% 

(99.9, 0.0) 
8.3% 

(91.7, 0.0) 
69.0% 

(31.0, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
7.0% 

(93.0, 0.0) 

MBIC 98.3% 
(1.7, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

68.5% 
(31.5, 0.0) 

99.9% 
(0.0, 0.1) 

100% 
(0.0, 0.0) 

 
 
 
 
 
  

43 
 



Table 2 continued...  
 

 Panel I: K = 5, r = 1, 1λ λ=  Panel II: K = 5, r = 3, 1 2 3λ λ λ λ= = =  
λ = .010 
R2=.010 

λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .010 
R2=.029 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

T=240 

N=25 
BIC1 2.0% 

(98.0, 0.0) 
62.4% 

(37.6, 0.0) 
97.6% 

(2.4, 0.0) 
0.0% 

(100, 0.0) 
8.5% 

(91.5, 0.0) 
53.0% 

(47.0, 0.0) 

MBIC 54.4% 
(41.6, 0.0) 

99.8% 
(0.2, 0.0) 

100% 
(0.0, 0.0) 

6.9% 
(93.1, 0.0) 

76.0% 
(24.0, 0.0) 

96.2% 
(3.8, 0.0) 

N=50 
BIC1 7.0% 

(93.0, 0.0) 
92.7% 

(7.3, 0.0) 
100% 

(0.0, 0.0) 
0.1% 

(99.9, 0.0) 
35.9% 

(64.1, 0.0) 
90.9% 

(9.1, 0.0) 

MBIC 69.4% 
(30.6, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

10.3% 
(89.7, 0.0) 

95.3% 
(4.7, 0.0) 

99.8% 
(0.2, 0.0) 

N=100 
BIC1 68.8% 

(31.2, 0.0) 
100% 

(0.0, 0.0) 
100% 

(0.0, 0.0) 
9.6% 

(0.0, 0.0) 
96.4% 

(3.6, 0.0) 
100% 

(0.0, 0.0) 

MBIC 79.2% 
(20.8, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

16.2% 
(83.8, 0.0) 

99.8% 
(0.2, 0.0) 

100% 
(0.0, 0.0) 

N=120 
BIC1 93.6% 

(6.4, 0.0) 
100% 

(0.0, 0.0) 
100% 

(0.0, 0.0) 
40.0% 

(0.0, 0.0) 
99.8% 

(0.2, 0.0) 
100% 

(0.0, 0.0) 

MBIC 81.6% 
(18.4, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

20.0% 
(80.0, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

N=145 
BIC1 99.4% 

(0.1, 0.5) 
99.4% 

(0.0, 0.6) 
99.4% 

(0.0, 0.6) 
92.2% 

(7.8, 0.0) 
99.9% 

(0.0, 0.1) 
99.9% 

(0.0, 0.1) 

MBIC 84.5% 
(15.5, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

22.9% 
(77.1, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

N=160 
BIC1 93.7% 

(0.0, 6.3) 
92.8% 

(0.0, 7.2) 
92.6% 

(0.0, 7.4) 
98.8% 

(1.0, 0.2) 
99.4% 

(0.0, 0.6) 
99.4% 

(0.0, 0.6) 

MBIC 83.2% 
(16.8, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

24.4% 
(75.6, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

N=200 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
10.3% 

(0.0, 89.7) 
8.5% 

(0.0, 91.5) 
7.9% 

(0, 92.1) 

MBIC 89.4% 
(10.6, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

27.1% 
(72.9, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 
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Table 3: BIC Estimation of Beta Matrix from Ten Empirical Factors 
 

Reported are the percentages (%) of correct estimation by the BIC1 and MBIC estimators from 1,000 simulated data 
sets.  The percentages (%) of under- and over-estimation by each estimator are reported in parentheses (•,•).  Data 
are drawn by 1

K
it j ij jt itx fβ ε== Σ + ; 2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h vε φ ξ ξ ξ ξ φ= + + + − , where K = 10, 0.2φ = , and jtf  
(j = 1, ... , K),  j th ′ , j iξ ′  ( 1, 2j′ = ) and itv are all randomly drawn from (0,1)N . For the beta matrix Β , we draw an 
N r×  random matrix gΒ  such that its first column equals the vector of ones and the entries in the other columns are 
drawn from (0,1)N .  We also draw a random K K×  positive definite matrix, compute the first r orthonormalized 
eigenvectors of the matrix, and set a K r×  matrix C  using the eigenvectors.  1/2

g C′Β = Β Λ , where Λ = 

1( ,..., )rdiag λ λ .  The rank of the beta matrix equals one or three (r = 1, 3).  BIC1 refers to the Bayesian Information 
Criterion (BIC) estimators of Cragg and Donald (1997), which is computed under the assumption that the itε  are 
i.i.d. over time (but cross-sectionally correlated). MBIC refers to the BIC estimator computed under the assumption 
that the itε are i.i.d. over both time and individual response variables.  The criterion function of the MBIC estimator 
uses T0.2 instead  of ln(T).  
 

 Panel I: K = 10, r = 1, 1λ λ=  Panel II: K = 10, r = 3, 1 2 3λ λ λ λ= = =  
λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=60 

N=25 
BIC1 59.3% 

(11.2, 29.5) 
55.8% 

(6.8, 37.4) 
52.0% 

(1.7, 46.3) 
12.5% 

(86.6, 0.9) 
27.9% 

(70.5, 1.6) 
53.6% 

(39.3, 7.1) 

MBIC 31.1% 
(68.4, 0.5) 

63.3% 
(35.9, 0.8) 

92.6% 
(6.1, 1.3) 

1.7% 
(98.3, 0.0) 

9.8% 
(90.2, 0.0) 

47.1% 
(52.8, 0.1) 

N=30 
BIC1 23.9% 

(0.8, 75.3) 
19.1% 

(0.3, 80.6) 
13.7% 

(0.0, 86.3) 
48.6% 

(42.8, 8.6) 
57.0% 

(26.1, 16.9) 
57.5% 

(8.9, 33.6) 

MBIC 32.4% 
(67.2, 0.4) 

66.9% 
(32.5, 0.6) 

95.3% 
(3.6, 1.1) 

0.2% 
(99.8, 0.0) 

10.3% 
(89.7, 0.0) 

55.7% 
(44.2, 0.1) 

N=36 
BIC1 0.6% 

(0.0, 99.4) 
0.2% 

(0.0, 99.8) 
0.2% 

(0.0, 99.8) 
33.9% 

(3.1, 63.0) 
22.2% 

(1.3, 76.5) 
12.6% 

(0.1, 87.3) 

MBIC 34.5% 
(65.3, 0.2) 

69.6% 
(30.0, 0.4) 

96.8% 
(2.6, 0.6) 

2.1% 
(97.9, 0.0) 

14.0% 
(86.0, 0.0) 

65.3% 
(34.7, 0.0) 

N=40 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
5.4% 

(0.1, 94.5) 
2.6% 

(0.0, 97.4) 
1.0% 

(0.0, 99.0) 

MBIC 33.1% 
(66.7, 0.2) 

72.3% 
(27.4, 0.3) 

98.3% 
(1.4, 0.3) 

1.0% 
(99.0, 0.0) 

14.2% 
(85.8, 0.0) 

68.9% 
(31.0, 0.1) 

N=50 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 

MBIC 33.0% 
(67.0, 0.0) 

76.0% 
(24.0, 0.0) 

98.9% 
(1.1, 0.0) 

0.9% 
(99.1, 0.0) 

13.8% 
(86.2, 0.0) 

75.4% 
(24.6, 0.0) 

N=100 
BIC1 0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBIC 35.3% 
(64.7, 0.0) 

85.2% 
(14.8, 0.0) 

100% 
(0.0, 0.0) 

0.5% 
(99.5, 0.0) 

25.0% 
(75.0, 0.0) 

90.7% 
(9.3, 0.0) 

N=200 
BIC1 0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBIC 34.0% 
(66.0, 0.0) 

89.6% 
(10.4, 0.0) 

100% 
(0.0, 0.0) 

0.4% 
(99.6, 0.0) 

35.5% 
(64.5, 0.0) 

97.5% 
(2.5, 0.0) 
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Table 3 continued... 
 

 Panel I: K = 10, r = 1, 1λ λ=  Panel II: K = 10, r = 3,  λ1 = λ2 = λ3 = λ 
λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=120 

N=25 
BIC1 17.8% 

(82.2, 0.0) 
51.1% 

(48.9, 0.0) 
94.4% 

(5.6, 0.0) 
0.0% 

(100, 0.0) 
3.2% 

(96.8, 0.0) 
42.3% 

(57.7, 0.0) 

MBIC 65.7% 
(34.2, 0.0) 

94.0% 
(5.9, 0.1) 

99.9% 
(0.0, 0.1) 

9.6% 
(90.4, 0.0) 

48.5% 
(51.5, 0.0) 

91.9% 
(8.1, 0.0) 

N=50 
BIC1 82.3% 

(15.3, 2.4) 
96.3% 

(0.8, 2.9) 
96.6% 

(0.0, 3.4) 
23.8% 

(76.2, 0.0) 
69.6% 

(30.3, 0.1) 
98.1% 

(1.4, 0.5) 

MBIC 81.6% 
(18.4, 0.0) 

99.6% 
(0.4, 0.0) 

100% 
(0.0, 0.0) 

24.1% 
(75.9, 0.0) 

83.7% 
(16.3, 0.0) 

99.6% 
(0.4, .0.0) 

N=60 
BIC1 76.2% 

(2.1, 21.7) 
74.9% 

(0.2, 24.9) 
73.6% 

(0.0, 26.4) 
62.0% 

(36.8, 1.2) 
90.1% 

(6.3, 3.6) 
93.4% 

(0.0, 6.6) 

MBIC 86.0% 
(14.0, 0.0) 

99.6% 
(0.4, 0.0) 

100% 
(0.0, 0.0) 

29.3% 
(70.7, 0.0) 

87.4% 
(12.6, 0.0) 

100% 
(0.0, .0.0) 

N=75 
BIC1 7.3% 

(0.0, 92.7) 
5.8% 

(0.0, 94.2) 
5.0% 

(0.0, 95.0) 
42.4% 

(1.1, 56.5) 
33.7% 

(0.2, 66.1) 
28.1% 

(0.0, 71.9) 

MBIC 88.8% 
(11.2, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 

37.1% 
(62.9, 0.0) 

93.4% 
(6.6, 0.0) 

100% 
(0.0, .0.0) 

N=80 
BIC1 0.4% 

(0.0, 99.6) 
0.3% 

(0.0, 99.7) 
0.4% 

(0.0, 99.6) 
11.8% 

(0.0, 88.1) 
7.6% 

(0.0, 92.4) 
5.7% 

(0.0, 94.3) 

MBIC 91.7% 
(8.3, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 

36.9% 
(63.1, 0.0) 

94.7% 
(5.3, 0.0) 

100% 
(0.0, .0.0) 

N=100 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
100% 

(0.0, 0.0) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 

MBIC 92.8% 
(7.2, 0.0) 

100% 
(0.0, 0.0) 

99.9% 
(0.1, 0.0) 

44.3% 
(55.7, 0.0) 

97.6% 
(2.4, 0.0) 

100% 
(0.0, 0.0) 

N=200 
BIC1 0.1% 

(99.9, 0.0) 
1.4% 

(98.6, 0.0) 
38.8% 

(61.2, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.7% 

(99.3, 0.0) 

MBIC 97.5% 
(2.5, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

64.5% 
(35.5, 0.0) 

99.7% 
(0.3, 0.0) 

100% 
(0.0, 0.0) 
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Table 3 continued... 
 

 Panel I: K = 10, r = 1, 1λ λ=  Panel II: K = 10, r = 3,  λ1 = λ2 = λ3 = λ 
λ = .010 
R2=.010 

λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .010 
R2=.029 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

T=240 

N=25 
BIC1 0.8% 

(99.2, 0.0) 
37.7% 

(62.3, 0.0) 
92.1% 

(7.9, 0.0) 
0.0% 

(100, 0.0) 
2.5% 

(97.5, 0.0) 
30.6% 

(69.4, 0.0) 

MBIC 40.7% 
(59.3, 0.0) 

99.5% 
(0.5, 0.0) 

100% 
(0.0, 0.0) 

2.9% 
(97.1, 0.0) 

63.3% 
(36.7, 0.0) 

93.3% 
(6.7, 0.0) 

N=50 
BIC1 4.4% 

(95.6, 0.0) 
86.1% 

(13.9, 0.0) 
100% 

(0.0, 0.0) 
0.0% 

(100, 0.0) 
25.9% 

(74.1, 0.0) 
86.4% 

(13.6, 0.0) 

MBIC 58.4% 
(41.6, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 

5.0% 
(95.0, 0.0) 

93.1% 
(6.9, .0.0) 

99.7% 
(0.3, 0.0) 

N=100 
BIC1 69.2% 

(30.8, 0.0) 
100% 

(0.0, 0.0) 
100% 

(0.0, 0.0) 
9.9% 

(90.1, 0.0) 
97.9% 

(2.1, 0.0) 
100% 

(0.0, 0.0) 

MBIC 74.8% 
(25.2, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

13.0% 
(87.0, 0.0) 

99.8% 
(0.2, .0.0) 

100% 
(0.0, 0.0) 

N=120 
BIC1 94.3% 

(5.7, 0.0) 
100% 

(0.0, 0.0) 
100% 

(0.0, 0.0) 
42.8% 

(52.2, 0.0) 
99.9% 

(0.1, 0.0) 
100% 

(0.0, 0.0) 

MBIC 77.5% 
(22.5, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

14.3% 
(85.7, 0.0) 

100% 
(0.0, .0.0) 

100% 
(0.0, 0.0) 

N=145 
BIC1 89.5% 

(0.0, 10.5) 
87.9% 

(0.0, 12.1) 
87.5% 

(0.0, 12.5) 
94.9% 

(3.9, 1.2) 
97.7% 

(0.0, 2.3) 
97.5% 

(0.0, 2.5) 

MBIC 77.7% 
(22.3, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

15.7% 
(84.3, 0.0) 

100% 
(0.0, .0.0) 

100% 
(0.0, 0.0) 

N=160 
BIC1 30.5% 

(0.1, 69.4) 
28.5% 

(0.0, 71.5) 
27.4% 

(0.0, 72.6) 
75.2% 

(0.1, 24.7) 
69.6% 

(0.0, 30.4) 
66.5% 

(0.0, 33.5) 

MBIC 81.5% 
(18.5, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

19.9% 
(80.1, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

N=200 
BIC1 0.0% 

(0.0, 100) 
0.0% 

(0.0, 0.0) 
0.0% 

(0.0, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(0.0, 0.0) 

MBIC 87.4% 
(12.6, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

25.3% 
(74.7, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 
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Table 4: BIC Rank Estimation of Demeaned Beta Matrix 
 

Reported are the percentages (%) of correct estimation by the BICD1 and MBICD estimators from 1,000 simulated 
data sets.  The percentages (%) of under- and over-estimation by each estimator are reported in parentheses (•,•).  
Data are drawn by 1

K
it j ij jt itx fβ ε== Σ + ; 2 2 1/2 2 1/2

1 1 2 2 1 2( ) / ( ) (1 )it i t i t i i ith h vε φ ξ ξ ξ ξ φ= + + + − , where 0.2φ = , and jtf  (j 
= 1, ... , K), j th ′ , j iξ ′ ( 1, 2j′ = ) and itv  are all randomly drawn from (0,1)N . For the beta matrix Β , we draw an 
N r×  random matrix gΒ  such that its first column equals the vector of ones and the entries in the other columns are 
drawn from (0,1)N .  We also draw a random K K×  positive definite matrix, compute the first r orthonormalized 
eigenvectors of the matrix, and set a K r×  matrix C  using the eigenvectors.  1/2

g C′Β = Β Λ , where Λ = 

1( ,..., )rdiag λ λ .  The rank of the beta matrix equals three (r = 3).  BICD1 refers to the Bayesian Information 
Criterion (BIC) estimators of Cragg and Donald (1997) for the demeaned beta matrix, which is computed under the 
assumption that the itε  are i.i.d. over time.  MBICD refers to the BICD estimator computed under the assumption 
that the itε are i.i.d. over both time and individual response variables.  The criterion function of the MBICD 
estimator uses T0.2 instead  of ln(T).  
 

   
Panel I: K = 5, r = 3,  λ1 = λ2 = λ3 = λ Panel II: K = 10, r = 3,  λ1 = λ2 = λ3 = λ 
λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=60 

N=25 
BICD1 13.0% 

(86.5, 0.5) 
30.3% 

(69.0, 0.7) 
64.3% 

(34.0, 1.7) 
34.0% 

(62.5, 3.5) 
49.1% 

(43.7, 7.2) 
63.5% 

(20.3, 16.2) 

MBICD 8.5% 
(91.5, 0.0) 

29.1% 
(70.7, 0.2) 

72.9% 
(26.7, 0.4) 

6.9% 
(93.1, 0.0) 

24.7% 
(75.1, 0.0) 

65.7% 
(33.6, 0.7) 

N=30 
BICD1 35.2% 

(63.4, 1.4) 
55.1% 

(41.1, 3.8) 
77.9% 

(14.1, 8.0) 
53.4% 

(17.9, 28.7) 
50.1% 

(9.8, 40.1) 
42.6% 

(3.1, 54.3) 

MBICD 10.0% 
(90.0, 0.0) 

35.3% 
(64.7, 0.0) 

81.2% 
(18.8, 0.0) 

7.3% 
(92.7, 0.0) 

28.4% 
(71.6, 0.0) 

73.5% 
(26.4, 0.1) 

N=36 
BICD1 61.8% 

(24.5, 13.7) 
66.7% 

(11.9, 21.4) 
68.9% 

(1.6, 29.5) 
13.1% 

(0.5, 86.4) 
9.1% 

(0.2, 90.7) 
5.3% 

(0.0, 94.7) 

MBICD 8.0% 
(92.0, 0.0) 

37.4% 
(62.5, 0.1) 

84.6% 
(15.3, 0.1) 

8.0% 
(91.9, 0.1) 

32.6% 
(67.3, 0.1) 

78.8% 
(21.0, 0.2) 

N=40 
BICD1 60.2% 

(25.7, 14.1) 
49.4% 

(2.0, 48.6) 
39.9% 

(0.1, 60.0) 
1.0% 

(0.0, 99.0) 
0.6% 

(0.0, 99.4) 
0.3% 

(0.0, 99.7) 

MBICD 7.9% 
(92.1, 0.0) 

39.5% 
(60.5, 0.0) 

87.3% 
(12.7, 0.0) 

7.1% 
(92.8, 0.1) 

33.5% 
(66.4, 0.1) 

83.1% 
(16.6, 0.0) 

N=50 
BICD1 0.6% 

(0.0, 99.4) 
0.7% 

(0.0, 99.3) 
0.3% 

(0.0, 99.7) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 

MBICD 9.7% 
(90.3, 0.0) 

45.2% 
(54.8, 0.0) 

91.6% 
(8.4, 0.0) 

5.9% 
(94.1, 0.0) 

35.2% 
(64.8, 0.0) 

87.7% 
(12.2, 0.1) 

N=100 
BICD1 0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBICD 8.6% 
(91.4, 0.0) 

54.3% 
(45.7, 0.0) 

97.2% 
(2.8, 0.0) 

7.3% 
(92.7, 0.0) 

52.7% 
(47.3, 0.0) 

96.5% 
(3.5, 0.0) 

N=200 
BICD1 0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBICD 6.5% 
(93.5, 0.0) 

62.8% 
(37.2, 0.0) 

99.4% 
(0.6, 0.0) 

6.4% 
(93.6, 0.0) 

62.9% 
(37.1, 0.0) 

99.0% 
(1.0, 0.0) 

 

48 
 



Table 4 continued...  

   
Panel I: K = 5, r = 3,λ1 = λ2 = λ3 = λ Panel II: K = 10, r = 3,  λ1 = λ2 = λ3 = λ 
λ = .020 
R2=.020 

λ = .030 
R2=.029 

λ = .050 
R2=.048 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .050 
R2=.130 

T=120 

N=25 
BICD1 3.4% 

(96.6, 0.0) 
25.8% 

(72.2, 0.0) 
73.9% 

(26.1, 0.0) 
2.4% 

(97.6, 0.0) 
14.2% 

(85.8, 0.0) 
61.9% 

(38.1, 0.0) 

MBICD 39.1% 
(60.9, 0.0) 

76.5% 
(23.5, 0.0) 

96.9% 
(3.1, 0.0) 

26.3% 
(73.7, 0.0) 

66.0% 
(34.0, 0.0) 

95.7% 
(53.8, 0.0) 

N=50 
BICD1 41.2% 

(58.8, 0.0) 
83.1% 

(16.9, 0.0) 
99.2% 

(0.8, 0.0) 
49.7% 

(50.0, 0.3) 
83.8% 

(15.7, 0.5) 
98.7% 

(0.5, 0.8) 

MBICD 56.0% 
(44.0, 0.0) 

93.0% 
(7.0, 0.0) 

99.9% 
(0.1, 0.0) 

45.9% 
(54.1, 0.0) 

91.1% 
(8.9, 0.0) 

99.8% 
(0.2, 0.0) 

N=60 
BICD1 67.9% 

(31.6, 0.5) 
95.2% 

(4.2, 0.6) 
99.3% 

(0.0, 0.7) 
76.5% 

(18.6, 4.9) 
88.9% 

(3.1, 8.0) 
89.7% 

(0.0, 10.3) 

MBICD 58.3% 
(41.7, 0.0) 

96.3% 
(3.7, 0.0) 

100% 
(0.0, 0.0) 

52.0% 
(48.0, 0.0) 

93.9% 
(6.1, 0.0) 

100% 
(0.0, 0.0) 

N=75 
BICD1 88.3% 

(2.9, 8.8) 
88.7% 

(0.1, 11.2) 
88.3% 

(0.0, 11.7) 
25.0% 

(0.3, 74.7) 
20.7% 

(0.1, 79.2) 
18.2% 

(0.0, 81.8) 

MBICD 65.8% 
(34.2, 0.0) 

97.2% 
(2.8, 0.0) 

100% 
(0.0, 0.0) 

61.0% 
(39.0, 0.0) 

97.5% 
(2.5, 0.0) 

100% 
(0.0, 0.0) 

N=80 
BICD1 76.6% 

(0.4, 23.0) 
73.9% 

(0.0, 26.1) 
71.7% 

(0.0, 28.3) 
3.9% 

(0.0, 96.1) 
3.0% 

(0.0, 97.0) 
2.2% 

(0.0, 97.8) 

MBICD 67.4% 
(32.6, 0.0) 

98.7% 
(1.3, 0.0) 

100% 
(0.0, 0.0) 

59.7% 
(40.3, 0.0) 

97.7% 
(2.3, 0.0) 

100% 
(0.0, 0.0) 

N=100 
BICD1 0.4% 

(0.0, 99.6) 
0.4% 

(0.0, 99.6) 
0.3% 

(0.0, 99.7) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 
0.0% 

(0.0, 100) 

MBICD 71.5% 
(28.5, 0.0) 

99.1% 
(0.9, 0.0) 

100% 
(0.0, 0.0) 

68.8% 
(31.2, 0.0) 

99.3% 
(0.7, 0.0) 

100% 
(0.0, 0.0) 

N=200 
BICD1 0.0% 

(100, 0.0) 
0.2% 

(99.8, 0.0) 
33.7% 

(66.3, 0.0) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 
10.2% 

(89.8, 0.0) 

MBICD 86.3% 
(13.7, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

84.2% 
(15.8, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 
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Table 4 continued... 
 

 Panel I: K = 5, r = 3,  λ1 = λ2 = λ3 = λ Panel II: K = 10, r = 3,  λ1 = λ2 = λ3 = λ 
λ = .010 
R2=.029 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

λ = .010 
R2=.029 

λ = .020 
R2=.057 

λ = .030 
R2=.083 

T=240 

N=25 
BICD1 0.1% 

(99.9, 0.0) 
20.5% 

(79.5, 0.0) 
67.2% 

(32.8, 0.0) 
0.0% 

(100, 0.0) 
8.6% 

(91.4, 0.0) 
48.4% 

(51.6, 0.0) 

MBICD 18.9% 
(81.1, 0.0) 

85.0% 
(15.0, 0.0) 

97.0% 
(3.0, 0.0) 

11.1% 
(88.9, 0.0) 

74.8% 
(25.2, 0.0) 

96.0% 
(4.0, 0.0) 

N=50 
BICD1 0.8% 

(99.2, 0.0) 
57.1% 

(42.9, 0.0) 
94.3% 

(5.7, 0.0) 
0.3% 

(99.7, 0.0) 
46.0% 

(54.0, 0.0) 
91.9% 

(8.1, 0.0) 

MBICD 27.8% 
(72.2, 0.0) 

97.7% 
(2.3, 0.0) 

99.9% 
(0.1, 0.0) 

19.5% 
(80.5, 0.0) 

95.8% 
(4.2, .0.0) 

99.9% 
(0.1, 0.0) 

N=100 
BICD1 26.1% 

(73.9, 0.0) 
98.1% 

(1.9, 0.0) 
100% 

(0.0, 0.0) 
30.0% 

(70.0, 0.0) 
99.0% 

(1.0, 0.0) 
100% 

(0.0, 0.0) 

MBICD 38.3% 
(61.7, 0.0) 

99.9% 
(0.1, 0.0) 

100% 
(0.0, 0.0) 

34.4% 
(65.6, 0.0) 

99.9% 
(0.1, .0.0) 

100% 
(0.0, 0.0) 

N=120 
BICD1 64.4% 

(35.6, 0.0) 
99.9% 

(0.1, 0.0) 
100% 

(0.0, 0.0) 
72.5% 

(27.5, 0.0) 
100% 

(0.0, 0.0) 
100% 

(0.0, 0.0) 

MBICD 42.8% 
(57.2, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

36.0% 
(64.0, 0.0) 

100% 
(0.0, .0.0) 

100% 
(0.0, 0.0) 

N=145 
BICD1 96.8% 

(3.2, 0.0) 
99.8% 

(0.0, 0.2) 
99.8% 

(0.0, 0.2) 
95.6% 

(1.1, 2.4) 
96.4% 

(0.0, 3.6) 
96.0% 

(0.0, 4.0) 

MBICD 46.7% 
(53.3, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

43.1% 
(56.9, 0.0) 

100% 
(0.0, .0.0) 

100% 
(0.0, 0.0) 

N=160 
BICD1 98.2% 

(0.3, 1.5) 
98.1% 

(0.0, 1.9) 
98.1% 

(0.0, 1.9) 
62.6% 

(0.0, 37.4) 
56.8% 

(0.0, 43.2) 
54.8% 

(0.0, 45.2) 

MBICD 45.6% 
(54.4, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

44.8% 
(55.2, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

N=200 
BICD1 1.7% 

(0.0, 98.3) 
1.4% 

(0.0, 98.6) 
1.3% 

(0.0, 98.7) 
0.0% 

(0.0, 100) 
0.0% 

(100, 0.0) 
0.0% 

(100, 0.0) 

MBICD 52.8% 
(47.2, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 

50.1% 
(49.9, 0.0) 

100% 
(0.0, 0.0) 

100% 
(0.0, 0.0) 
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Table 5: Results from Estimation with Five Different Sets of Monthly Portfolio Returns 
 

Reported are the MBIC estimates of the ranks of beta matrices from five different sets of U.S. stock portfolio returns.  The MBICD estimates of the ranks of 
demeaned beta matrices are in parentheses.  The individual rows of the table report MBIC and MBICD estimation results and the adjusted R-squares from 
portfolio-by-portfolio time series regressions obtained using different sets of empirical factors (with the numbers of empirical factors used in parentheses).  FF, 
CRR, MOM, REV, and JW, respectively, refer to the three Fama-French factors (FF: VW, SMB, and HML), the five Chen-Roll-Ross macroeconomic factors 
(CRR: MP, UI, DEI, UTS, and UPR), the momentum factor (MOM), the short-term and long-term reversal factors (REV), and the three Jagannathan and 
Wang factors (JW: VW, UPR, and LAB).  We do not report the estimation results using the LIQ factors.  The data on the LIQ factors are only available from December 
1969 to December 2008.      
 
 

Panel A: Estimation with the sample period from January 1952 to  December 2011 (T = 720)* 
 
Empirical Factors (K) 25 Size and B/M 

Port. 
30 Industrial  

Port. 
25 Size and B/M + 
30 Industrial Port. 

25 Size and 
Momentum Port. 

100 Size and B/M 
Port.** 

 2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
FF (3)   91.0% 3 (3) 61.5% 3 (3) 73.8% 3 (3) 83.4% 3 (3) 77.6% 3 (3) 
MOM and REV (3) 9.8% 2 (1) 7.1% 2 (1) 8.2% 2 (1) 19.4% 2 (1) 8.9% 2 (1) 
CRR (5) 1.3% 1 (0) 1.0% 1 (0) 1.1% 1 (0) 1.9% 1 (0) 1.2% 1 (0) 
JW (3) 73.8% 1 (1) 58.5% 2 (1) 64.8% 1 (1) 72.5% 2 (2) 64.0% 1 (1) 
FF and MOM (4) 91.1% 3 (3) 62.1% 4 (4) 74.1% 4 (4) 91.3% 4 (3) 77.8% 4 (3) 
FF and REV (5) 91.1% 3 (3) 61.8% 3 (3) 73.9% 3 (3) 91.3% 4 (3) 77.7% 3 (3) 
FF, MOM and REV (6) 91.1% 3 (3) 62.2% 4 (4) 74.2% 4 (4) 91.4% 4 (4) 77.9% 4 (3) 
FF and CRR (8) 91.1% 4 (4) 61.8% 4 (4) 73.9% 4 (4) 83.7% 4 (3) 77.7% 3 (3) 
FF, JW (5) 91.6% 3 (3) 62.2% 4 (3) 74.3% 4 (4) 83.7% 3 (3) 79.5% 3 (3) 
FF, CRR and JW (9) 91.6% 4 (4) 62.3% 4 (4) 74.4% 4 (4) 83.7% 3 (3) 79.6% 3 (3) 
FF, MOM, REV, CRR, and JW (12) 91.7% 4 (4) 63.0% 5 (4) 74.9% 5 (5) 91.7% 4 (4) 79.8% 5 (4) 

*T = 634 for the estimation with the LAB factor of Jagannathan and Wang.   
**Since data are unbalanced, we use the average of the time series observations on individual portfolios (T = 717; T = 632 if the LAB factor is used). 
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Table 5 continued... 
 

Panel B: Estimation results for the subsample period: January 1952 – December 1981 (T = 360)* 
 
Empirical Factors (K) 25 Size and B/M 

Port. 
30 Industrial  

Port. 
25 Size and B/M + 
30 Industrial Port. 

25 Size and 
Momentum Port. 

100 Size and B/M 
Port.** 

 2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
FF (3)   91.5% 3 (3) 70.1% 3 (3) 79.7% 3 (3) 88.2% 3 (3) 76.9% 3 (3) 
MOM and REV (3) 10.7% 2 (1) 8.7% 2 (1) 9.6% 2 (0) 17.1% 2 (1) 9.4% 2 (1) 
CRR (5) 8.5% 1 (0) 6.4% 1 (0) 7.3% 1 (0) 9.0% 1 (0) 7.2% 1 (0) 
JW (3) 76.3% 1 (1) 66.9% 1 (1) 71.1% 1 (1) 76.0% 1 (1) 66.3% 1 (1) 
FF and MOM (4) 91.6% 3 (3) 70.5% 4 (4) 79.9% 4 (4) 93.1% 4 (3) 76.9% 3 (3) 
FF and REV (5) 91.6% 4 (4) 70.5% 4 (3) 79.9% 4 (4) 89.1% 3 (3) 70.0% 3 (3) 
FF, MOM and REV (6) 91.6% 4 (4) 70.7% 4 (4) 80.1% 4 (4) 93.2% 4 (3) 70.0% 3 (3) 
FF and CRR (8) 91.6% 3 (3) 70.3% 3 (3) 79.8% 3 (3) 88.4% 3 (3) 76.9% 3 (3) 
FF, Jagannathan and Wang (5) 92.7% 3 (3) 72.1% 3 (3) 81.4% 3 (3) 88.7% 3 (3) 80.8% 3 (3) 
FF, CRR and JW (9) 92.7% 4 (4) 72.2% 4 (3) 81.5% 4 (3) 88.9% 3 (3) 80.8% 3 (3) 
FF, MOM, REV, CRR, and JW (12) 92.8% 4 (4) 72.8% 4 (3) 81.8% 4 (4) 93.8% 5 (4) 81.0% 3 (3) 
*T = 274 for the estimation with the LAB factor of Jagannathan and Wang.   
**Since data are unbalanced, we use the average of the time series observations on individual portfolios (T = 358; T = 273 if the LAB factor is used). 
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Table 5 continued... 
 

Panel C: Estimation results for the subsample period: January 1982 – December 2011 (T = 360) 
 
Empirical Factors (K) 25 Size and B/M 

Port. 
30 Industrial  

Port. 
25 Size and B/M + 

30 Ind. Port. 
25 Size and 

Momentum Port. 
100 Size and B/M 

Port. 
 2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

FF (3)   91.0% 3 (3) 58.6% 3 (3) 71.2% 3 (3) 80.4% 3 (3) 79.1% 3 (3) 
MOM and REV (3) 12.4% 2 (1) 8.8% 1 (1) 10.2% 1 (1) 24.7% 2 (2) 11.7% 2 (1) 
CRR (5) 0.4% 1 (0) 0.2% 0 (0) 0.3% 0 (0) 0.7% 1 (0) 0.4% 1 (0) 
JW (3) 72.3% 1 (1) 54.3% 1 (1) 61.3% 1 (1) 70.4% 1 (1) 62.8% 1 (1) 
FF and MOM (4) 91.1% 4 (3) 59.4% 4 (4) 71.7% 4 (4) 90.6% 4 (3) 79.4% 4 (3) 
FF and REV (5) 91.1% 4 (4) 58.7% 3 (3) 71.3% 3 (3) 81.2% 4 (3) 79.3% 4 (4) 
FF, MOM and REV (6) 91.2% 5 (4) 59.6% 4 (3) 71.9% 4 (4) 90.8% 5 (4) 79.7% 5 (4) 
FF and CRR (8) 91.1% 3 (3) 59.0% 4 (3) 71.5% 4 (4) 80.9% 4 (3) 79.2% 3 (3) 
FF, JW (5) 91.0% 3 (3) 58.9% 4 (4) 71.4% 4 (4) 80.8% 3 (3) 79.1% 3 (3) 
FF, CRR and JW (9) 91.1% 3 (3) 59.0% 4 (3) 71.5% 4 (4) 80.9% 4 (3) 79.2% 3 (3) 
FF, MOM, REV, CRR, and JW (12) 91.3% 4 (4) 60.0% 4 (3) 72.2% 5 (4) 90.9% 5 (4) 79.9% 5 (4) 
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Table 6: Results from Estimation with Monthly Individual Stock Returns 
 

Reported are the MBIC estimates of the ranks of beta matrices using individual stock returns for the period January 1952 - December 2011 (Tmax = 720) and 
two different subsample periods (Tmax = 360).  The MBICD estimates of the ranks of demeaned beta matrices are reported in parentheses.  The individual rows 
of the table report the estimation results and the adjusted R-squares from portfolio-by-portfolio time series regressions obtained using different sets of 
empirical factors (with the numbers of empirical factors used in parentheses).  FF, CRR, MOM, REV, and JW, respectively, refer to the three Fama-French 
factors (FF: VW, SMB, and HML), the five Chen-Roll-Ross macroeconomic factors (CRR: MP, UI, DEI, UTS, and UPR), the momentum factor (MOM), the 
short-term and long-term reversal factors (REV), and the three Jagannathan and Wang factors (JW: VW, UPR, and LAB).  We do not report the estimation results 
using the LIQ factors.  The data on the LIQ factors are only available from December 1969 to December 2008.      
 
 

Empirical Factors (K) Jan. 1952 – Dec. 2011 
(N,Tmax) = (614,720)* 

Jan. 1952 – Dec. 1981 
(N,Tmax) = (781,360)* 

Jan. 1982 – Dec. 2011 
(N,Tmax) = (2268,360)*** 

 2R  MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

FF (3)   24.4% 3 (3) 31.6% 3 (3) 16.0% 2 (2) 
MOM and REV (3) 3.9% 1 (1) 5.2% 2 (1) 3.9% 1 (1) 
CRR (5) 0.8% 1 (0) 3.2% 1 (0) 0.7% 0 (0) 
JW (3) 20.1% 1 (1) 26.4% 1 (1) 11.8% 1 (1) 
FF and MOM (4) 24.9% 3 (3) 32.0% 3 (3) 16.6% 2 (2) 
FF and REV (5) 24.8% 3 (3) 32.1% 3 (3) 16.4% 2 (2) 
FF, MOM and REV (6) 25.2% 4 (3) 32.4% 3 (3) 17.0% 2 (2) 
FF and CRR (8) 24.7% 3 (3) 31.9% 3 (3) 16.3% 2 (2) 
FF, JW (5) 24.6% 3 (3) 32.5% 3 (2) 16.1% 2 (2) 
FF, CRR and JW (9) 24.7% 3 (3) 32.8% 3 (2) 16.3% 2 (2) 
FF, MOM, REV, CRR, and JW (12) 25.5% 4 (3) 33.6% 4 (3) 17.3% 3 (3) 

*Since data are unbalanced, we use the average of the time series observations on individual stocks (T = 599; T = 555 if the LAB factor is used) for rank estimation. 
**Since data are unbalanced, we use the average of the time series observations on individual stocks (T = 333; T = 262 if the LAB factor is used) for rank estimation. 
***Since data are unbalanced, we use the average of the time series observations on individual stocks (T = 313) for rank estimation. 
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Table 7: Results from Estimation with Six Different Sets of Quarterly Returns 

 
Reported are the MBIC estimates of the ranks of beta matrices from six different sets of U.S. stock portfolio returns and individual stock returns.  The MBICD 
estimates of demeaned beta matrices are in parentheses.  The individual rows of the table report the rank estimation results and the adjusted R-squares from 
portfolio-by-portfolio time regressions using different sets of empirical factors (with the numbers of empirical factors used in parentheses).  FF, CRR, MOM, 
REV, and JW, respectively, refer to the three Fama-French factors (FF: VW, SMB, and HML), the five Chen-Roll-Ross macroeconomic factors (CRR: MP, UI, 
DEI, UTS, and UPR), the momentum factor (MOM), the short-term and long-term reversal factors (REV), and the three Jagannathan and Wang factors (JW: 
VW, UPR, and LAB).  The sample period is from the first quarter of 1952 to the fourth quarter of 2011 (T = 240).  We do not report the estimation results using the 
LIQ factors.  The data on the LIQ factors are only available from December 1969 to December 2008.   
 
 

Empirical Factors (K) 25 Size and B/M 
Port. 

30 Industrial  
Port. 

25 Size and B/M + 
30 Industrial Port. 

25 Size and 
Momentum Port. 

100 Size and B/M 
Port.* 

Individual stocks  
(N = 614)** 

 2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

FF (3)   92.6% 3 (3) 65.0% 3 (3) 77.0% 3 (3) 86.5% 3 (3) 81.9% 3 (3) 29.8% 2 (2) 
MOM and REV (3) 17.3% 2 (1) 11.2% 1 (1) 13.9% 2 (1) 25.9% 2 (1) 15.9% 2 (1) 7.4% 1 (1) 
CRR (5) 1.9% 1 (0) 2.0% 1 (0) 2.0% 1 (0) 3.0% 1 (0) 1.8% 1 (0) 2.2% 1 (0) 
JW (3) 75.5% 1 (1) 60.8% 2 (1) 67.2% 1 (1) 74.7% 1 (1) 66.9% 1 (1) 24.0% 1 (1) 
FF and MOM (4) 92.6% 3 (3) 65.2% 3 (3) 77.1% 3 (3) 92.5% 4 (3) 81.9% 3 (3) 30.4% 3 (3) 
FF and REV (5) 92.7% 4 (4) 65.5% 4 (3) 77.3% 4 (4) 87.0% 4 (3) 82.0% 3 (3) 30.4% 3 (2) 
FF, MOM and REV (6) 92.7% 4 (4) 65.7% 4 (3) 77.4% 4 (4) 92.6% 4 (3) 82.1% 3 (3) 31.1% 3 (3) 
FF and CRR (8) 92.7% 3 (3) 66.0% 4 (3) 77.6% 4 (4) 86.7% 3 (3) 81.9% 3 (3) 30.6% 3 (2) 
FF, JW (5) 92.6% 3 (3) 65.3% 4 (3) 77.2% 4 (3) 86.8% 3 (3) 81.9% 3 (3) 30.2% 3 (2) 
FF, CRR and JW (9) 92.7% 3 (3) 66.1% 4 (3) 77.6% 4 (4) 86.8% 3 (3) 81.9% 3 (3) 30.7% 4 (3) 
FF, MOM, REV, CRR, and JW (12) 92.8% 4 (4) 66.7% 5 (4) 78.1% 5 (5) 92.7% 4 (3) 82.2% 4 (4) 31.9% 4 (4) 

*Since data are unbalanced, we use the average of the time series observations on individual portfolios (T = 239) for rank estimation. 
**Since data are unbalanced, we use the average of the time series observations on individual stocks (T = 199) for rank estimation. 
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Table 8: Results from Estimation with Macro Quarterly Factors and Quarterly Returns 

 
Reported are the MBIC estimates of the ranks of beta matrices from six different sets of U.S. stock portfolio returns and individual stock returns.  The MBICD 
estimates of demeaned beta matrices are in parentheses.  The individual rows of the table report the rank estimation results and the adjusted R-squares from 
portfolio-by-portfolio time regressions using different sets of empirical factors (with the numbers of empirical factors used in parentheses).  FF, CRR, MOM, 
REV, and JW, respectively, refer to the three Fama-French factors (FF: VW, SMB, and HML), the five Chen-Roll-Ross macroeconomic factors (CRR: MP, UI, 
DEI, UTS, and UPR), the momentum factor (MOM), the short-term and long-term reversal factors (REV), and the three Jagannathan and Wang factors (JW: 
VW, UPR, and LAB).  The additional models we consider and their empirical factors are i) the CAPM with VW; ii) the CCAPM with CG; iii) the Lettau-
Ludvigson (LL) model with CAY, CG, and CAY×CG; iv) the Yogo (Y) model with VW, DCG, and NDCG; v) the Santos-Veronesi (SV) model with VW and 
VW×LC; and vi) the Li-Vassalou-Xing (LVX) model with DHH, DCORP, and DHCORP.  We do not report the estimation results for the Lustig and Van Nieuwerburgh 
model because the time series data on the MYMO (housing collateral ratio) factor are available only up to the first quarter of 2005. The sample period is from the first 
quarter of 1952 to the fourth quarter of 2011 (Tmax  = 240). 
 

Empirical Factors (K) 25 Size and B/M 
Port. 

30 Industrial  
Port. 

25 Size and B/M + 
30 Industrial  Port. 

25 Size and 
Momentum Port. 

100 Size and B/M 
Port.* 

Individual Stocks 
(N = 614)** 

 2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

2R  
MBIC 

(MBICD) 
2R  

MBIC 
(MBICD) 

CAPM (1) 75.4% 1 (1) 60.5% 1 (1) 67.0% 1 (1) 74.5% 1 (1) 66.8% 1 (1) 23.7% 1 (1) 
CCAPM (1) 2.1% 1 (0) 1.3% 1 (0) 1.7% 1 (0) 2.1% 1 (0) 1.9% 1 (0) 0.8% 0 (0) 
LL (3) 2.1% 1 (0) 1.7% 1 (0) 1.9% 1 (0) 2.2% 1 (0) 1.8% 1 (0) 1.0% 0 (0) 
Y (3) 75.3% 1 (1) 60.7% 1 (1) 67.0% 1 (1) 74.5% 1 (1) 66.7% 1 (1) 23.8% 1 (1) 
SV (2) 75.5% 1 (1) 60.7% 1 (1) 67.1% 1 (1) 75.0% 1 (1) 66.8% 1 (1) 24.3% 2 (2) 
LVX (3) 3.7% 1 (0) 2.1% 1 (0) 2.8% 1 (0) 3.8% 1 (0) 3.3% 1 (0) 2.3% 1 (0) 
FF and CCAPM (4) 92.6% 3 (3)  65.0% 3 (3) 77.0% 3 (3) 86.7% 3 (3) 81.9% 3 (3) 29.9% 3 (2) 
FF and LL (6) 92.6% 3 (3)  65.4% 4 (3) 77.2% 4 (3) 86.8% 4 (3) 81.9% 3 (3) 30.1% 3 (3) 
FF and Y (5) 92.6% 3 (3)  65.3% 3 (3) 77.1% 3 (3) 86.6% 3 (3) 81.9% 3 (3) 30.0% 3 (2) 
FF and SV (4) 92.6% 3 (3)  65.2% 3 (3) 77.1% 3 (3) 86.7% 4 (3) 81.9% 3 (3) 30.3% 3 (3) 
FF and LVX (6) 92.6% 3 (3)  65.3% 3 (3) 77.1% 3 (3) 86.8% 4 (3) 81.9% 3 (3) 30.2% 2 (2) 
All above together (12) 92.6% 3 (3) 65.8% 4 (3) 77.4% 4 (4) 87.1% 4 (3) 81.9% 3 (3) 31.0% 4 (4) 
All above + MOM, REV (15) 92.7% 4 (4) 66.5% 5 (4) 77.9% 5 (4) 92.7% 4 (3) 82.2% 4 (4) 32.2% 5 (4) 
All above + CRR, JW (18) 92.6% 3 (3) 66.5% 4 (3) 77.9% 4 (4) 87.2% 4 (3) 82.0% 3 (3) 31.7% 5 (4) 
All above + MOM, REV, CRR, JW (21) 92.8% 4 (4) 7.2% 5 (4) 78.3% 5 (5) 92.8% 4 (4) 82.4% 4 (4) 32.8% 5 (5) 

*Since data are unbalanced, we use the average of the time series observations on individual portfolios (T = 239) for rank estimation. 
**Since data are unbalanced, we use the average of the time series observations on individual stocks (T = 199) for rank estimation. 
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