Cross-Sectional Asset Pricing with Individual Stocks: Betas versus Characteristics

Tarun Chordia, Amit Goyal, and Jay Shanken

UNIL | Université de Lausanne

swiss:finance:institute

Main question

- Are expected returns related to
 - Risk/betas, OR
 - Characteristics
- If both, which is more important?

How to answer?

- Use portfolios
 - Helps mitigate EIV problem (Fama and MacBeth, 1973)
 - But,
 - Less efficient (Ang, Liu, and Schwarz, 2010)
 - Method of grouping is important (Lewellen, Nagel, and Shanken, 2010)
- Use individual securities
 - But, EIV problem

What we do

- Use individual securities
- Correct for EIV bias (Litzenberger and Ramaswamy, 1979; Shanken, 1992; Kim, 1995)
 - And a few other biases
- Allow betas to change over time (Rosenberg and Guy, 1976; Shanken, 1990; Fama and French, 1997; Avramov and Chordia, 2006)
- Quantify relative contribution of risk loadings versus characteristics in explaining the cross-section of returns

Two-pass procedure

- Time-series regression (TSR)
 - Condition betas on
 - Firm characteristics (Size, B/M, six-month return), or
 - Firm characteristics (Size, B/M, six-month return) + Macro variables (Term spread, Default spread)
 - One-, three-, and four-factor models
- Cross-sectional regression (CSR)
- For now, we do not allow for time-variation in risk premia but relax this later on in the third-stage

TSR

Unconditional TSR

$$R_{it} = B_{0i} + B_i F_t + \mathcal{E}_{it}$$

- Conditional TSR
 - Define *zts_{it}* to be a px1 vector of conditioning variables
 - Redefine scaled intercept and factors as

$$F_{it}^* = [zts'_{(p-1)it-1}, zts_{i1t-1}F_t', \dots, zts_{ipt-1}F_t']'$$

• Then, the TSR is

$$R_{it} = B_{0i}^* + B_i^* F_{it}^* + \mathcal{E}_{it}$$

TSR ...

 Example of a one-factor model with firm characteristics conditioning variables

$$R_{it} = (B_{i0}^* + B_{i1}^* S z_{it-1} + B_{i2}^* B M_{it-1} + B_{i3}^* \operatorname{Re} t 6_{it-2}) + (B_{i0}^{Mkt^*} + B_{i1}^{Mkt^*} S z_{it-1} + B_{i2}^{Mkt^*} B M_{it-1} + B_{i3}^{Mkt^*} \operatorname{Re} t 6_{it-2}) \operatorname{Mkt}_t + \varepsilon_{it}$$

Characteristics are cross-sectionally demeaned

• Then the implied market beta is given by $B_{it-1}^{Mkt} = (B_{i0}^{Mkt^*} + B_{i1}^{Mkt^*} S z_{it-1}^* + B_{i2}^{Mkt^*} B M_{it-1}^* + B_{i3}^{Mkt^*} \operatorname{Re} t 6_{it-2})$ Cross-sectional regression (CSR) using OLS

$$R_{t} = \gamma_{0t} + \hat{B}_{t-1}\gamma_{1t} + Zcs_{t-1}\gamma_{2t} + \mathcal{E}_{t}$$
$$\hat{\Gamma}_{t} \equiv (\hat{\gamma}_{0t}, \hat{\gamma}_{1t}', \hat{\gamma}_{2t}')'$$
$$\hat{\Gamma}_{t} = \left(\hat{X}_{t}'\hat{X}_{t}\right)^{-1}\hat{X}_{t}'R_{t}, \text{ where } \hat{X}_{t} \equiv \begin{bmatrix} 1_{N_{t}} : \hat{B}_{t-1} : Zcs_{t-1} \end{bmatrix}$$

CSR biases

$$\hat{X}_{t} = \begin{bmatrix} 1_{N_{t}} : \hat{B}_{t-1} : Zcs_{t-1} \end{bmatrix}$$
$$= \begin{bmatrix} 1_{N_{t}} : B_{t-1} : Zcs_{t-1} \end{bmatrix} + \begin{bmatrix} 0 : \hat{B}_{t-1} - B_{t-1} : 0 \end{bmatrix}$$
$$= X_{t} + \begin{bmatrix} 0 : U_{t} : 0 \end{bmatrix}$$

• Estimation error in betas, *U*, is the cause of all the trouble

CSR biases – EIV

- $\hat{X}'_t \hat{X}_t$ contains a term $U'_t U_t$, which is the (cross-sectional sum of the) of the estimation error variance in betas
- This increases the "denominator" and causes the classic EIV problem
- Fortunately, we know the estimation error in betas from TSR

$$\hat{\Gamma}_t^{\text{EIV}} = \left(\hat{X}_t' \hat{X}_t - \sum_{i=1}^{N_t} M' \hat{\Sigma}_{\hat{B}_{it-1}} M\right)^{-1} \hat{X}_t' R_t$$

$$\hat{\Sigma}_{\hat{B}_{it-1}} = Zts'_{it-1}\hat{\Sigma}^{\text{White}}_{\hat{B}^*_i}Zts_{it-1}, \text{ and } M = \begin{bmatrix} 0_{k\times 1} & I_{k\times k} & 0_{k\times k_2} \end{bmatrix}$$

CSR biases – 1-month bias

- The "numerator" contains $U'_t \varepsilon_t$. This should cancel out in balanced panels and homosekadastic case
 - In one-factor case, this term is equal to the sum of $\left(Rm_t \overline{Rm}\right)\varepsilon_{it}^2$
- In heteroskedastic case (as observed in the data), this term is not zero and leads to the second correction

$$bias_{t} = \begin{pmatrix} 0 \\ \sum_{i=1}^{N_{t}} Zts'_{it-1} (F_{di}^{*'}F_{di}^{*})^{-1} F_{dit}^{*'}e_{it}^{2} \\ 0_{k_{2} \times 1} \end{pmatrix}$$

CSR biases – another bias

- Both the denominator and the numerator contain term such as $U'_t Zcs_{t-1}$
- Since Zcs contains price-related variables (size, B/M, sixmonth return), this term is also not zero
- This necessitates a third correction
 - We assume for simplicity an AR(1) process for size and B/M to implement this correction

Final formula

$$\hat{\Gamma}_{t}^{\text{final}} = \left(\hat{X}_{t}'\hat{X}_{t} - \sum_{i=1}^{N_{t}} M'\hat{\Sigma}_{B_{it-1}}M - \text{anotherbias}_{t}\right)^{-1} \left(\hat{X}_{t}'R_{t} - bias_{t}\right)$$

Contribution measures

Using average CSR estimates

$$E_{t-1}\left[R_{t}\right] = \overline{\hat{\gamma}_{0}} + E_{t-1}^{\text{beta}}\left[R_{t}\right] + E_{t-1}^{\text{char}}\left[R_{t}\right], \text{ where}$$
$$E_{t-1}^{\text{beta}}\left[R_{t}\right] = \hat{B}_{t-1}\overline{\hat{\gamma}_{1}}, \text{ and } E_{t-1}^{\text{char}}\left[R_{t}\right] = Zcs_{t-1}\overline{\hat{\gamma}_{2}}$$

Using cross-sectional variation at time t

$$\%(\text{Betas}) = \operatorname{var}_{cs} \left(E_{t-1}^{\text{beta}} [R_t] \right) / \operatorname{var}_{cs} \left(E_{t-1} [R_t] \right)$$
$$\%(\text{Chars}) = \operatorname{var}_{cs} \left(E_{t-1}^{\text{char}} [R_t] \right) / \operatorname{var}_{cs} \left(E_{t-1} [R_t] \right)$$

Contribution measures ...

$$\operatorname{var}_{cs}\left(E_{t-1}^{\operatorname{beta}}\left[R_{t}\right]\right) = \overline{\hat{\gamma}'}_{1}\operatorname{var}_{cs}\left(\hat{B}_{t-1}\right)\overline{\hat{\gamma}_{1}}$$

- Have to again correct the cross-sectional variance of estimated betas using the same trick as in the regular EIV correction
- Standard errors for contributions
 - Resample gammas using their standard errors
 - Recalculate contribution numbers
 - Repeat 1,000 times to obtain empirical distribution
 - Use Efron's procedure to account for non-linearity

Data

- All common stocks on NYSE, AMEX, and NASDAQ
- Sample: 1951 to 2011
- Price greater than \$1 (for CSR)
- At least five years of data
 - Could lead to survivorship bias
 - We do not include stocks in CSR in the first five years of their life

One-factor model

	Panel A: All Stocks						
	Bias un	corrected	Bias co	orrected			
	Firm +			Firm +			
$zts \rightarrow$	Firm	Macro	Firm	Macro			
Cnst	0.686	0.825	0.838	1.060			
	(4.02)	(4.68)	(4.96)	(6.11)			
B _{Mkt}	0.331	0.235	0.158	-0.053			
	(2.13)	(1.56)	(0.91)	(-0.31)			
Sz	-0.043	-0.048	-0.045	-0.050			
	(-1.56)	(-1.72)	(-1.67)	(-1.82)			
B/M	0.282	0.267	0.274	0.269			
	(6.04)	(5.79)	(5.92)	(5.68)			
Ret6	1.248	1.294	1.097	1.065			
	(8.93)	(9.06)	(6.86)	(6.64)			
Nstocks	2.025	2.025	2.025	2.025			
% Betas	20.7	14.0	3.6	0.5			
% Chars	82.7	88.4	97.6	99.5			
% Diff	62.0	74.4	93.9	99.0			
	(6.5,98.6)	(10.7,99.9)	(49.3,100.0)	(88.3,100.0)			

Three-factor model

	Panel A: All Stocks						
	Bias unc	corrected	Bias cor	rected			
		Firm +		Firm +			
$zts \rightarrow$	Firm	Macro	Firm	Macro			
Cnst	0.406	0.537	0.532	0.677			
	(3.39)	(4.70)	(3.52)	(4.79)			
B _{Mkt}	0.254	0.186	0.072	0.000			
	(1.64)	(1.24)	(0.43)	(-0.00)			
B_{SMB}	0.241	0.206	0.233	0.191			
	(2.30)	(2.03)	(1.96)	(1.73)			
$\mathrm{B}_{\mathrm{HML}}$	-0.006	0.020	0.018	0.029			
	(-0.06)	(0.21)	(0.17)	(0.30)			
Sz	0.003	-0.008	0.001	-0.007			
	(0.15)	(-0.48)	(0.04)	(-0.36)			
B/M	0.269	0.242	0.273	0.276			
	(9.40)	(8.65)	(6.93)	(6.98)			
Ret6	1.257	1.288	1.115	1.103			
	(10.40)	(10.91)	(7.68)	(7.90)			
Nstocks	2,025	2,025	2,025	2,025			
% Betas	38.8	36.3	23.5	19.9			
% Chars	61.4	61.8	71.4	72.0			
% Diff	22.6	25.6	47.8	52.1			
	(-28.4,86.1)	(-22.0,89.7)	(-10.2,99.4)	(2.9,99.5)			

Four-factor model

	Panel A: All Stocks						
	Bias und	corrected	Bias corrected				
		Firm +		Firm +			
$zts \rightarrow$	Firm	Macro	Firm	Macro			
Cnst	0.398	0.510	0.566	0.663			
	(3.47)	(4.67)	(3.79)	(4.81)			
B _{Mkt}	0.257	0.198	0.095	0.084			
	(1.65)	(1.31)	(0.46)	(0.53)			
B_{SMB}	0.239	0.213	0.197	0.171			
	(2.26)	(2.08)	(1.67)	(1.54)			
$\mathrm{B}_{\mathrm{HML}}$	0.008	0.034	0.054	0.045			
	(0.08)	(0.36)	(0.52)	(0.45)			
B_{MOM}	0.186	0.202	0.428	0.404			
	(1.28)	(1.43)	(2.48)	(2.59)			
Sz	0.005	-0.005	-0.003	-0.014			
	(0.28)	(-0.30)	(-0.14)	(-0.73)			
B/M	0.276	0.251	0.272	0.291			
	(10.33)	(9.66)	(6.96)	(7.48)			
Ret6	1.265	1.307	1.062	0.999			
	(12.72)	(13.40)	(8.21)	(7.69)			
Nstocks	2,025	2,025	2,025	2,025			
% Betas	40.9	45.0	31.9	38.5			
% Chars	54.4	49.3	55.4	50.8			
% Diff	13.5	4.3	23.5	12.3			
_	(-23.7,75.6)	(-30.8,68.6)	(-15.5,74.3)	(-22.9,73.1)			

Time variation in risk premia

 Allow predictability in risk premia with dividend-price ratio, term spread, and default spread as predictive variables x

$$\hat{\gamma}_{t} = c_0 + c_1' x_{t-1} + v_t$$

Calculate fitted values

$$\hat{\gamma}_{t-1}^{fit} = \hat{c}_0 + \hat{c}_1' x_{t-1}$$

Recalculate the contribution numbers as

$$E_{t-1}\left[R_{t}\right] = \hat{\gamma}_{0} + E_{t-1}^{\text{beta}}\left[R_{t}\right] + E_{t-1}^{\text{char}}\left[R_{t}\right], \text{ where}$$
$$E_{t-1}^{\text{beta}}\left[R_{t}\right] = \hat{B}_{t-1}\hat{\gamma}_{1t-1}^{\text{fit}}, \text{ and } E_{t-1}^{\text{char}}\left[R_{t}\right] = Zcs_{t-1}\hat{\gamma}_{2t-1}^{\text{fit}}$$

Four-factor

	B _{Mkt}	B_{SMB}	$\mathrm{B}_{\mathrm{HML}}$	B _{MOM}	Sz	B/M	Ret6	
Panel C.1: Conditional betas ($zts = Firm$)								
Cnst	-1.245	0.555	0.718	1.569	-0.063	0.323	1.907	
	(-1.45)	(1.16)	(1.49)	(1.62)	(-0.70)	(2.24)	(3.20)	
Payout	21.717	-21.518	-11.963	-18.608	4.558	-10.237	0.961	
	(1.18)	(-2.02)	(-1.11)	(-1.13)	(2.13)	(-3.09)	(0.07)	
Def	0.324	0.696	-0.094	-0.479	-0.110	0.304	-1.029	
	(0.58)	(2.31)	(-0.27)	(-0.80)	(-1.84)	(2.83)	(-2.73)	
Term	4.425	-5.374	-2.838	7.374	-1.739	5.547	5.520	
	(0.35)	(-0.69)	(-0.35)	(0.67)	(-1.12)	(2.25)	(0.66)	
Adj - R^2	0.12	0.33	0.07	0.32	0.54	1.94	1.21	

% Betas = 42.3, % Chars = 47.4, % Diff = 5.1 (-9.6, 49.7)

Panel C.2: Conditional betas ($zts = Firm + Macro$)							
Cnst	-1.128	0.373	0.308	1.625	-0.158	0.533	1.473
	(-1.62)	(0.82)	(0.68)	(1.93)	(-2.08)	(3.77)	(2.59)
Payout	20.282	-19.560	-10.058	-15.151	5.671	-8.887	7.233
	(1.24)	(-1.96)	(-0.97)	(-0.95)	(3.08)	(-2.61)	(0.55)
Def	0.209	0.813	0.224	-0.660	-0.062	0.020	-1.022
	(0.44)	(2.94)	(0.74)	(-1.32)	(-1.29)	(0.20)	(-2.54)
Term	7.086	-7.554	-2.270	3.793	-2.303	6.831	11.201
	(0.60)	(-1.02)	(-0.30)	(0.33)	(-1.70)	(2.75)	(1.23)
$\operatorname{Adj}-R^2$	0.29	0.59	-0.23	0.65	1.37	1.44	0.92

% Betas = 50.2, % Chars = 43.4, % Diff = -6.8 (-23.8, 35.7)

Conclusion

- Risk premium on SMB strong but that on HML weak
- Reject all factor models
 - Rejection not news
- Both betas and characteristics matter
- Characteristics often more important than betas
 - However, four-factor model conditional bias-corrected betas explain more of returns than characteristics with time-varying risk premia