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1 Introduction

Dynamic factor models have been extensively used in macroeconomics and finance since

their introduction by Sargent and Sims (1977) and Geweke (1977) as a way of capturing the

cross-sectional and dynamic correlations between multiple series in a parsimonious way. A far

from comprehensive list of early and more recent applications include not only business cycle

analysis (see Litterman and Sargent (1979), Stock and Watson (1989, 1991, 1993), Diebold and

Rudebusch (1996) or Gregory, Head and Raynauld (1997)) and bond yields (Singleton (1981),

Jegadeesh and Pennacchi (1996), Dungey, Martin and Pagan (2000) or Diebold, Rudebusch and

Aruoba (2006)), but also wages (Engle and Watson (1981)), employment (Quah and Sargent

(1993)), commodity prices (Peña and Box (1987)) and financial contagion (Mody and Taylor

(2007)).

The model parameters are typically estimated by maximising the likelihood function of

the observed data, which can be readily obtained either as a by-product of the Kalman filter

prediction equations or from Whittle’s (1962) frequency domain asymptotic approximation.1

Once the parameters have been estimated, filtered values of the latent factors can be extracted

by means of the Kalman smoother or its Wiener-Kolmogorov counterpart. These estimation

and filtering issues are well understood (see e.g. Harvey (1989)), and the same can be said

of their effi cient numerical implementation (see Jungbacker and Koopman (2008)). However,

several important modelling issues arise in practice, such as the right number of factors or the

identification of their effects.

Another non-trivial empirical issue is the specification of the dynamics of common and

idiosyncratic factors. When the cross-sectional dimension, N , is very large, one might expect to

accurately recover the latent factors using simpler procedures (see Bai and Ng (2008) and the

references therein). But in models in whichN is small, the filtered estimates of the state variables

are likely to be heavily influenced by the dynamic specification of the model, which thus becomes

a first order issue. The objective of our paper is precisely to provide diagnostics for neglected

serial correlation in those state variables. For that reason, we focus on Lagrange Multiplier

(LM) tests, which only require estimation of the model under the null. As is well known,

Likelihood ratio (LR), Wald and LM tests are equivalent under the null and sequences of local

alternatives as the number of observations increases for a fixed cross-sectional dimension, and

therefore they share their optimality properties.2 In addition to computational considerations,

1Watson and Engle (1983) and Quah and Sargent (1993) discuss the application of the EM algorithm of
Dempster, Laird and Rubin (1977) in this context, which avoids the computation of the likelihood function. As is
well known, though, this algorithm slows down considerably near the optimum, so it is best used as a procedure
for obtaining good initial values.

2Extensions to situations in which both data dimensions simultaneously grow are left for further research.
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which are particularly relevant when one is concerned about several alternatives, an important

advantage of LM tests expressed as score tests is that they often coincide with tests of easy to

interpret moment conditions (see Newey (1985) and Tauchen (1985)), which will continue to

have non-trivial power even in situations for which they are not optimal. As we shall see, our

proposed tests are no exception in that regard.

Earlier work on specification testing in dynamic factor models include Engle and Watson

(1980), who explained how to apply the LM testing principle in the time domain for models

with static factor loadings, Geweke and Singleton (1981), who studied LR and Wald tests in

the frequency domain, and Fernández (1990), who applied the LM principle in the frequency

domain to a multivariate “structural time series model”(see Harvey (1989) for a comparison of

time domain and frequency domain testing methods in that context).

Aside from considering a general class of models, our main contribution is that our proposed

tests are very simple to implement, and even simpler to interpret. Once a model has been

specified and estimated, score tests focusing on several departures from the null can be routinely

computed from simple statistics of the estimated state variables. And even though our theoretical

derivations make extensive use of spectral methods for time series, we provide both time domain

and frequency domain interpretations of the relevant scores, so researchers who strongly prefer

one method over the other could apply them without abandoning their favourite estimation

techniques.

The rest of the paper is organised as follows. In section 2, we review the properties of

dynamic factor models, their estimators and filters. Then, we derive our tests in section 3, and

present a Monte Carlo evaluation of their finite sample behaviour in section 4. This is followed in

section 5 by an empirical illustration that revisits the dynamic factor model used by Camacho,

Pérez-Quirós and Poncela (2012) to construct a coincident indicator for the US. Finally, our

conclusions, together with several interesting extensions, can be found in section 6. Auxiliary

results are gathered in appendices.

2 Theoretical background

2.1 Dynamic factor models

To keep the notation to a minimum, we focus on single factor models, which suffi ce to

illustrate our main results. A parametric version of a dynamic exact factor model for a finite

dimensional vector of N observed series, yt, can be defined in the time domain by the system
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of equations

yt = π + c(L)xt + ut,

αx(L)xt = βx(L)ft,

αui(L)ui,t = βui(L)vi,t, i = 1, . . . , N,

(ft, v1,t, . . . , vN,t)|It−1;π,θ ∼ N [0, diag(1, γ1, . . . , γN )],

where xt is the common factor, ut the N specific factors, c(L) =
∑M

`=−F c`L
` a vector of possibly

two-sided polynomials in the lag operator, αx(L) and αui(L) are one-sided polynomials of orders

px and pui , respectively, while βx(L) and βui(L) are one-sided (coprime) polynomials of orders

qx and qui , It−1 is an information set that contains the values of yt and ft up to, and including

time t− 1, π is the mean vector and θ refers to all the remaining model parameters.3

A specific example would be y1,t
...

yN,t

 =

 π1
...
πN

+

 c1,0
...

cN,0

xt +

 c1,1
...

cN,1

xt−1 +

 u1,t
...

uN,t

 , (1)

xt = αx1xt−1 + ft,

uit = αui1uit−1 + vit, i = 1, . . . , N.

Note that the dynamic nature of the model is the result of three different characteristics:

1. The serial correlation of the common factor

2. The serial correlation of the idiosyncratic factors

3. The dynamic impact of the common factor on the observed variables.

Thus, we would need to shut down all three sources to go back to a traditional static factor

model (see Lawley and Maxwell (1971)). Cancelling only one or two of those channels still

results in a dynamic factor model. For example, Engle and Watson (1981) considered models

with static factor loadings, while Peña and Box (1987) further assumed that the specific factors

were white noise. To some extent, characteristics 1 and 3 overlap, as one could always write any

dynamic factor model in terms of white noise common factors. In this regard, the assumption

of Arma(px, qx) dynamics for the common factor can be regarded as a parsimonious way of

modelling an infinite distributed lag.4

3We could relax the assumption of cross-sectional orthogonality in the idiosyncratic terms, but in general we
would still need to impose some parametric restrictions for identification purposes given that we maintain the
assumption of fixed N .

4Some dynamic factor models can be written as static factor models with a larger number of factos. For
example, in model (1) we could define ft and xt−1 as two “orthogonal”static factors, with factor loading ci,0 and
ci,1 + αx1ci,0 respectively. Our tests, though, apply to all factor models, including those without a static factor
representation.
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In this paper we are interested in hypothesis tests for px = dx vs px = dx+kx or pui = dui vs

pui = dui + kui , or the analogous hypotheses for qx and qui . To avoid dealing with nonsensical

situations, we maintain the assumption that the model which has been estimated under the null

is identified (see Geweke (1977) and Geweke and Singleton (1981) for a general discussion of

identification in dynamic factor models, and Heaton and Solo (2004) for more specific results

for the parametric models that we consider in this paper).

2.2 Tests of white noise vs. AR(1) in the common factors

Let us start by quickly reviewing the first order serial correlation tests obtained by Fiorentini

and Sentana (2012). The baseline model in that paper is the static factor model

yt = π + cxt + ut,
xt = ft,
ut = vt,(

ft
vt

)
|It−1,θs ∼ N

[(
0
0

)
,

(
1 0
0 Γ

)]
,

which remains rather popular in finance (except in term structure applications) (see Connor,

Goldberg and Korajczik (2010) and the references therein).

The Kalman smoother yields the same factor estimates as the Kalman filter updating equa-

tions, which have simple closed form expressions:

ft|t = ft|T = c′Σ−1 (yt − π) =
c′Γ−1

1 + c′Γ−1c
(yt − π) ,

vt|t = vt|T = ΓΣ−1 (yt − π) = yt − π − cxt|t.

A potentially interesting alternative would be:

yt = π + cxt + ut,
xt = ψxt−1 + ft,

ut = vt.

This alternative reduces to the static specification under the null H0 : ψ = 0. Otherwise,

it has the autocorrelation structure of a Varma(1,1). Fiorentini and Sentana (2012) show that

testing the null of multivariate white noise against such a complex Varma(1,1) specification is

extremely easy. Specifically, they show that the average score with respect to ψ under H0 is

s̄ψT =
1

T

T∑
t=2

ft|T ft−1|T ,

which is entirely analogous to the score that one would use to test for first order serial correlation

in ft if the latent factors were observed (see Breusch and Pagan (1980) or Godfrey (1989)). The

main difference is that the asymptotic variance of this score is [c′Σ−1c]2 < 1. Fiorentini and

Sentana (2012) interpret c′Σ−1c as the R2 in the theoretical least squares projection of ft on
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a constant and yt. Therefore, the higher the degree of observability of the common factor, the

closer the asymptotic variance of the average score will be to 1, which is the asymptotic variance

of the first sample autocorrelation of ft. Intuitively, this convergence result simply reflects the

fact that the common factor becomes observable as the “signal to noise”ratio c′Σ−1c approaches

1. Before the limit, though, the test takes into account the unobservability of ft. Given that

c′Σ−1c = (c′Γ−1c)/[1+(c′Γ−1c)] under the assumption that Γ has full rank, the aforementioned

R2 will typically be close to 1 for N large due to the pervasive nature of the common factor (see

e.g. Sentana (2004)).

When we move to testing say Ar(1) vs Ar(2) in the unobservable factors, the model is

already dynamic under the null and the Kalman filter and smoother equations no longer coincide.

More importantly, those equations are recursive and therefore diffi cult to characterise without

solving a multivariate algebraic Riccati equation. Although a Lagrange Multiplier test of the

new null hypothesis in the time domain is conceptually straightforward, the algebra is incredibly

tedious and the recursive scores diffi cult to interpret (see Appendix A).

An alternative way to characterise a dynamic factor model is in the frequency domain. As

we shall see, the (non-recursive) frequency domain scores remain remarkably simple, since they

closely resemble the scores of a static factor model.

2.3 Maximum likelihood estimation in the frequency domain

In what follows, we maintain the assumption that yt is a covariance stationary process,

possibly after suitable transformations as in section 5.

Under stationarity, the spectral density matrix of the observed variables is proportional to

Gyy(λ) = c(e−iλt)Gxx(λ)c′(eiλt) + Guu(λ),

Gxx(λ) =
βx(e−iλt)βx(eiλt)

αx(e−iλt)αx(eiλt)
,

Guu(λ) = diag[Gu1u1(λ), . . . , GuNuN (λ)],

Guiui(λ) = γi
βui(e

−iλ)βui(e
iλt)

αui(e
−iλt)αui(e

iλt)
,

which inherits the exact single factor structure of the unconditional covariance matrix of a static

factor model. Let

Iyy(λ) =
1

2πT

T∑
t=1

T∑
s=1

(yt − π)(ys − π)′e−i(t−s)λ (2)

denote the periodogram matrix and λj = 2πj/T (j = 0, . . . T − 1) the usual Fourier frequencies.

If we assume that Gyy(λ) is not singular at all frequencies,5 the so-called Whittle (discrete

5Otherwise, there would be a linear combination of the components of the y′ts at frequency λ that would be
identically 0.
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spectral) approximation to the log-likelihood function is6

−NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gyy(λj)| −
1

2

T−1∑
j=0

tr
{
G−1yy(λj)[2πIyy(λj)]

}
. (3)

If we further assume that Gxx(λ) > 0 and Guiui(λ) > 0 for all i, computations can be

considerably speeded up by exploiting that

G−1yy(λ) = G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλt)c′(eiλt)G−1uu(λ),

ω(λ) = [G−1xx (λ) + c′(eiλt)G−1uu(λ)c(e−iλt)]−1.

The MLE of π, which only enters through Iyy(λ), is the sample mean, so in what follows we

focus on demeaned variables. In turn, the score with respect to all the remaining parameters is

d(θ) =
1

2

T−1∑
j=0

∂vec′[Gyy(λj)]

∂θ
M(λj)m(λj),

m(λ) = vec
[
2πI′yy(λ)−G′yy(λ)

]
,

M(λ) =
[
G−1yy(λ)⊗G−1′yy (λ)

]
.

We provide numerically reliable and fast to compute expressions for all the required deriva-

tives in Appendix B.

The information matrix is

Q =
1

4π

∫ π

−π

∂vec′[Gyy(λ)]

∂θ
M(λ)

{
∂vec′[Gyy(λ)]

∂θ

}∗
dλ,

where ∗ denotes the conjugate transpose of a matrix. A consistent estimator will be provided

by either by the outer product of the score or by

Φ(θ) =
1

2

T−1∑
j=0

∂vec′[Gyy(λj)]

∂θ
M(λj)

{
∂vec′[Gyy(λ)]

∂θ

}∗
.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators under suitable regularity conditions have been provided by Dunsmuir and Hannan

(1976) and Dunsmuir (1979), who also show their asymptotic equivalence to the time domain

ML estimators.7

6There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
7This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see

Choudhuri, Ghosal and Roy (2004)).
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2.4 The (Kalman-)Wiener-Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed estimators of the latent

variables too. Specifically, let

yt − π =

∫ π

−π
eiλtdZy(λ),

V [dZy(λ)] = Gyy(λ)dλ

denote Cramer’s spectral decomposition of the observed process, which is the frequency domain

analogue to Wold’s decomposition.

The Wiener-Kolmogorov two-sided filter for the common factor xt at each frequency is given

by

c′(eiλ)Gxx(λ)G−1yy(λ)dZy(λ)

so that the spectral density of the smoother xKt|T as T →∞
8 will be

GxKxK (λ) = c′(eiλ)Gxx(λ)G−1yy(λ)Gxx(λ)c(e−iλ) = ω(λ)c′(eiλ)G−1uu(λ)c(e−iλ)Gxx(λ). (4)

Hence, the spectral density of the final estimation error xt − xKt|∞ will be given by

Gxx(λ)− c′(eiλ)G−1yy(λj)c(eiλ) = ω(λ).

Having obtained these, we can easily obtain the smoother for ft, fKt|∞, by applying to x
K
t|∞ the

one-sided filter

αx(e−iλ)/βx(e−iλ)

Likewise, we can derive its spectral density, as well as the spectral density of its final estimation

error ft−fKt|∞. Finally, we can obtain the autocovariances of x
K
t|∞, f

K
t|∞ and their final estimation

errors by applying the usual inverse Fourier transformation

cov(zt, zt−k) =

∫ π

−π
eiλkGzz(λ)dλ.

2.5 The minimal suffi cient statistics for {xt}

In any given realisation of the vector process {yt}, the values of {xt} could be regarded as a

set of T parameters. With this interpretation in mind, we can define xGt|∞ as the spectral GLS

estimator of xt through the transformation

[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ)G−1uu(λ)dZy(λ).

8The main difference between the Wiener-Kolmogorov filtered values, xKt|∞, and the Kalman filter smoothed
values, xKt|T , results from the dependence of the former on a double infinite sequence of observations. As shown
by Fiorentini (1995) and Gómez (1999), though, they can be made numerically identical by replacing both pre-
and post- sample observations by their least squares projections onto the linear span of the sample observations.
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Similarly, we can define uGt|∞ though

{IN − c(e−iλ)[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ)G−1uu(λ)}dZy(λ).

It is then easy to see that the joint spectral density of xGt|∞ and uGt|∞ will be block-diagonal,

with the (1,1) element being

Gxx(λ) + [c′(eiλ)G−1uu(λ)c(e−iλ)]−1

and the (2,2) block

Gyy(λ)− c(e−iλ)[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ),

whose rank is N − 1. This orthogonalisation may be regarded as the frequency domain version

of the endogenous factorial representation in Gourieroux, Monfort and Renault (1991). As such,

it allows us to factorise the spectral log-likelihood function of yt as the sum of the log-likelihood

function of xGt|∞, which is univariate, and the log-likelihood function of uGt|∞.
9 Importantly,

the parameters characterising Gxx(λ) only enter through the first component. In contrast, the

remaining parameters affect both components. Moreover, we can easily show that

1. xGt|∞ = xt + ζGt|∞, with xt and ζ
G
t|∞ orthogonal at all leads and lags10

2. The smoothed estimator of xt obtained by applying the Wiener- Kolmogorov filter to xGt|∞

coincides with xKt|∞.

This confirms that xGt|∞ constitute minimal suffi cient statistics for xt, thereby generalising

earlier results by Fiorentini, Sentana and Shephard (2004), who looked at the related class of

factor models with time-varying volatility, and Jungbacker and Koopman (2008), who considered

models in which c(e−iλ) = c for all λ.11

9The Jacobian of the transformation is 1, as we can write(
[c′(eiλ)G−1uu(λ)c(e

−iλ)]−1c′(eiλ)G−1uu(λ)

{IN − c(e−iλ)[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ)G−1uu(λ)}

)
=

(
1 0

0 G
1/2
uu (λ)

)(
[c′(eiλ)G−1uu(λ)c(e

−iλ)]−1c′(eiλ)G
−1/2
uu (λ)

{IN −G−1/2uu (λ)c(e−iλ)[c′(eiλ)G−1uu(λ)c(e
−iλ)]−1c′(eiλ)G

−1/2
uu (λ)}

)
G−1/2uu (λ),

where the matrix in the centre is orthogonal.
10This implies that E(xGt|∞|xt) = xt, which confirms that while xKt|∞ can be understood as a Bayesian cross-

sectional GLS estimator of xt that uses the prior xt ∼ N [0,Gxx(λ)], xGt|∞ relies on a diffuse prior instead.
11 It is also possible to relate xGt|∞ to the first spectral principal component extracted from

G
−1/2
uu (λ)Gyy(λ)G

−1/2
uu (λ) along the lines of Appendix 2 in Sentana (2004).
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2.6 Autocorrelation structure of the factor estimators

As discussed in Maravall (1999), the serial dependence structure of the estimators of the

latent variables can be a useful tool for model diagnostic. Large discrepancies between theoretical

and empirical autocovariance functions of the factor estimators can be interpreted as indication

of model misspecification. As we shall see below, our LM tests carry out this comparison in a

very precise statistical sense.

Smoothed factors, though, are the result of optimal symmetric two-sided filters. As a conse-

quence, their serial correlation structure is generally different from that of the unobserved state

variables. Specifically, the frequency by frequency orthogonality of predictor and prediction error

implies that GxKxK (λ) ≤ Gxx(λ) for all λ, so that the smoothed estimates are smoother than the

latent factors. In addition, the degree of unobservability of xt depends exclusively on the size of

[c′(eiλ)G−1uu(λ)c(e−iλ)]−1 relative to Gxx(λ), which is generally different for different frequencies.

This can be visualised by representing over [−π, π] either GxKxK (λ), [c′(eiλ)G−1uu(λ)c(e−iλ)]−1

and their sum Gxx(λ), or the R2-type, signal to noise measure GxKxK (λ)/Gxx(λ).

In our general multivariate setting, the time domain structure of the smoothed components

is complicated and diffi cult to interpret. There are special cases, however, in which the resulting

models for the unobserved factors are rather simple. Consider first the case where βx(L) =

βu1(L) = · · · = βuN (L) = 1, so that all state variables follow purely autoregressive processes.

Moreover, assume static loadings to simplify the exposition. The Fourier transform of GxKxK (λ)

yields the autocovariance generating function (Acgf) of xK , which is given by

ACGFxK (L) =

∑N
i=1 c

2
iαui(L)αui(L

−1)/γi(∑N
i=1 c

2
iαui(L)αui(L

−1)/γi

)
+ αx(L)αx(L−1)

1

αx(L)αx(L−1)

=
βxK (L)βxK (L−1)

αxK (L)αxK (L−1)
γxK ,

where γxK denotes the variance of the univariate Wold innovations in x
K
t|∞.

Let pu = max(pui) and p = max(pu, px). Then, it is easy to prove that βxK (L) and αxK (L)

are polynomials of orders pu and p + px respectively. Hence, the factor estimators will display

the Acgf of and Arma( p + px, pu). For example, when both common and specific factors

follow AR(1) processes the factor estimators will display the autocorrelation of an Arma(2,1).

It is also interesting to consider the special case in which the autoregressive polynomials

αx(L) and αui(L) share some or even all their roots. In this latter case αx(L) = αui(L) = α(L),

and

ACGFxK (L) =
α(L)α(L−1)

∑N
i=1 c

2
i /γi

α(L)α(L−1)
(∑N

i=1 c
2
i /γi + 1

) 1

α(L)α(L−1)
=

∑N
i=1 c

2
i /γi∑N

i=1 c
2
i /γi + 1

1

α(L)α(L−1)
.
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In this particular case the model for the common factor estimators is exactly the same as

the model for the unobserved factor re-scaled by the static signal to noise ratio

∑N
i=1 c

2
i /γi∑N

i=1 c
2
i /γi + 1

.

Moreover, the smoother of the innovations in the common factor, fKt|∞, will be white noise.

Interestingly,

GxKxK (λ) =

∑N
i=1 c

2
i /γi∑N

i=1 c
2
i /γi + 1

Gxx(λ),

so that the ratio between the smoothed and the unobservable factor spectra is constant at all

frequencies. Intuitively, this is due to the fact that in this special case the observable variables

follow a Var(1) with a diagonal companion matrix whose innovations covariance matrix retains

the static factor model properties. As a consequence, the quasi-differenced data will have the

usual static factor structure. Another way of obtaining the same result is by noticing that the

dynamic GLS factor estimators, xGt|∞, will be a static transformation of the observed series in

this case.

More generally, when the common and specific factors follow Arma processes we have that

ACGFxK (L) =

∑N
i=1 c

2
i
αui (L)αui (L

−1)
βui (L)βui (L

−1)γi(∑N
i=1 c

2
i
αui (L)αui (L

−1)
βui (L)βui (L

−1)γi

)
+ αx(L)αx(L−1)

βx(L)βx(L
−1)

βx(L)βx(L−1)

αx(L)αx(L−1)
=

=

αu(L)αu(L−1)
βu(L)βu(L

−1)γu
αu(L)αu(L−1)
βu(L)βu(L

−1)γu + αx(L)αx(L−1)
βx(L)βx(L

−1)

βx(L)βx(L−1)

αx(L)αx(L−1)
=

=

αu(L)αu(L−1)βx(L)βx(L
−1)

βu(L)βu(L
−1)

[βx(L)βx(L
−1)αu(L)αu(L−1)+αx(L)αx(L−1)βu(L)βu(L

−1)]αx(L)αx(L−1)
βu(L)βu(L

−1)βx(L)βx(L
−1)

γxK =

αu(L)αu(L−1)βx(L)βx(L−1)βx(L)βx(L−1)

[βx(L)βx(L−1)αu(L)αu(L−1) + αx(L)αx(L−1)βu(L)βu(L−1)]αx(L)αx(L−1)
γxK .

If we further assume that the moving average polynomials of the specific factor processes are

coprime, then

αu(L) =

N∑
i=1

ciαui(L)βu\i(L),

with

βu\i(L) =
∏
j=1
j 6=i

βuj (L)

and

βu(L) =
∏
i=1

βui(L).

10



For example, if all the factors are Arma(1,1) then the order of both αu(L) and βu(L) will

be N , so the Acgf of the factor estimators is that of an Arma(N + 2, N + 2).

Let us now turn to the specific factors. The spectral matrix of the idiosyncratic smoother is

GuKuK (λ) = Guu(λ)Gyy(λ)−1Guu(λ)= Guu(λ)− cc′

c′G−1uu(λ)c+Gxx(λ)−1
.

Similarly, the relation between the smoother and the unobserved factor spectral matrix is

GuKuK (λ) =

[
I− cc′

c′G−1uu(λ)c+Gxx(λ)−1

]
Guu(λ).

The Fourier transform of GuKuK (λ) yields the Acgf of the Varma process for uKt , which

is generally rather complicated. In the case of purely autoregressive unobserved factors, the

generic i th element of vecd [GuKuK (λ)] has the form

vecd [GuKuK (λ)]i =
γi

αui(e
−iλ)αui(e

iλ)
− c2i∑N

i=1 c
2
iαui(e

−iλ)αui(e
iλ)/γi + αx(e−iλ)αx(eiλ)

=

=
γiαx(e−iλ)αx(eiλ) +

∑N
i=1 c

2
iαui(e

−iλ)αui(e
iλ)− c2iαui(e−iλ)αui(e

iλ)

αui(e
−iλ)αui(e

iλ)
[∑N

i=1 c
2
iαui(e

−iλ)αui(e
iλ)/γi + αx(e−iλ)αx(eiλ)

] =

=

∑N
j=1
j 6=i

c2iαui(e
−iλ)αui(e

iλ)

αui(e
−iλ)αui(e

iλ)
[∑N

i=1 c
2
iαui(e

−iλ)αui(e
iλ)/γi + αx(e−iλ)αx(eiλ)

] .
Hence, if we call pu/i = maxj 6=i(puj , px), it is easy to see that uKi,t displays the autocorrelation

structure of an Arma(p+ pi, pu/i).

2.7 Testing AR(1) vs AR(2) for observable xt

Although all previous spectral calculations are straightforward, they might seem daunting

unless one is familiar with frequency domain methods. Fortunately, they have remarkably simple

time domain counterparts. For pedagogical purposes, let us initially assume that xt is observable.

The model under the alternative is

(1− αx1L)(1− ψx1L)xt = ft.

Therefore, the null is H0 : ψx1 = 0.12 Under the alternative, the spectral density of xt is

σ2f
(1− αx1e−iλ)(1− αx1eiλ)

1

(1− ψx1e−iλ)(1− ψx1eiλ)
.

12This is a multiplicative alternative. Instead, we could test H0 : αx2 = 0 in the additive alternative

(1− αx1L− αx2L2)xt = ft.

In that case, it would be more convenient to reparametrise the model in terms of partial autocorrelations as
α12 = α1/ (1− α2) , α22 = α2. We stick to multiplicative alternatives, which cover MA terms too.

11



The derivative of Gxx(λ) with respect to ψx1 under the null is

∂Gxx(λ)

∂ψx1
= 2(e−iλ + eiλ)

σ2f
(1− αx1e−iλ)(1− αx1eiλ)

= 2 cosλGxx(λ).

Hence the spectral version of the score with respect to ψx1 under H0 is

T−1∑
j=0

cosλjG
−1
xx (λj)[2πIxx(λj)−Gxx(λj)] =

T−1∑
j=0

cosλj [2πIff (λj)],

where we have exploited the fact that

T−1∑
j=0

∂Gxx(λj)

∂ψx1
G−1xx (λj) =

T−1∑
j=0

cosλj = 0.

Given that

Iff (λj) = γ̂ff (0) + 2
T−1∑
k=1

γ̂ff (k) cos(kλj),

the spectral version of the score becomes

T−1∑
j=0

cosλj [2πIff (λj)] = T [γ̂ff (1) + γ̂ff (T − 1)].

In turn, the time domain version of the score will be∑
t

(xt − αx1xt−1)(xt−1 − αx1xt−2) =
∑
t

ftft−1,

which is essentially identical because γ̂ff (T−1) = T−1xTx1 = op(1). Therefore, the LM spectral

test is simply checking that the first sample (circulant) autocovariance of ft coincides with its

theoretical value under H0, exactly like the usual Breusch-Godfrey serial correlation LM test.

3 Neglected serial correlation tests in dynamic factor models

3.1 Testing ARMA(p,q) vs ARMA(p+d,q) (or ARMA(p,q+d)) in the com-
mon factor

We can combine our previous results to test the same null hypothesis when xt is not directly

observed. As we saw before, the spectral density of the dynamic GLS estimator of the common

factor is

GxGxG(λ) = Gxx(λ) + [c′(eiλ)G−1uu(λ)c(e−iλ)]−1.

As a result,
∂GxGxG(λ)

∂ψx1
=
∂Gxx(λ)

∂ψx1
.

Hence, the score with respect to ψx1 will be given by

1

2

T−1∑
j=0

∂Gxx(λj)

∂ψx1
G−1
xGxG

(λj)[2πIxGxG(λj)−GxGxG(λj)].

12



After some straightforward algebraic manipulations, we can show that under the null of H0 :

ψx1 = 0 this score can be written as∑T−1

j=0
cosλjG

−1
xx (λj)[2πIxKxK (λj)−GxKxK (λj)]

=
∑T−1

j=0
cosλj [2πIfKfK (λj)−GfKfK (λj)].

Once again, the time domain counterpart to the spectral score with respect to ψx1 is (asymp-

totically) proportional to the difference between the first sample autocovariance of fKt and its

theoretical counterpart under H0. Therefore, the only difference with the observable case is that

the autocovariance of fKt , which is a forward filter of the Wold innovations of yt, is no longer

0 when ψx1 = 0, although it approaches 0 as the signal to noise ratio increases. In that case,

our proposed tests would converge to the usual Breusch-Godfrey LM tests for neglected serial

correlation discussed in section 2.7.

Let us illustrate our test by means of a simple example. Imagine that the model under the

alternative is:
yt = π + cxt + ut, ut = vt,
(1− ψx1L)(1− αx1L)xt = ft,(

ft
vt

)
|It−1,θ ∼ N

[(
0
0

)
,

(
1 0
0 Γ

)]
.

The results in section 2.6 imply that xKt|∞ will have the autocorrelation structure of an Ar(2)

when ψx1 = 0, while fKt|∞ will follow an Ar(1) with first order autocovariance (c′Γ−1c)αx1/(1−

α2
fK

), where

αfK =
1 + α2x1 + (c′Γ−1c)−

√
[(1 + αx1)2 + (c′Γ−1c)] [(1− αx1)2 + (c′Γ−1c)]

2αx1
.

The larger (c′Γ−1c) is, the closer this autocovariance will be to 0.

The LM test of H0 : ψx1 = 0 will simply compare the first sample autocovariance of fKt|∞

with its theoretical value above. The advantage of our frequency domain approach is that we

obtain those autocovariances without explicitly solving the Riccati equation.

Unfortunately, the approach that we have used to obtain a residual correlation test for the

common factor cannot be generally applied to the specific factors since the parameters inGuu(λ)

affect both components of the orthogonalised spectral log-likelihood function. Nevertheless, we

can start from first principles by exploiting the fact that

∂vec[Gyy(λ)]

∂ψx1
= [c(e−iλ)⊗ c(e−iλ)]

∂Gxx(λ)

∂ψx1

We saw before that under the null of H0 : ψx1 = 0

∂Gxx(λ)

∂ψx1
= 2 cosλGxx(λ).

13



Not surprisingly, if we introduce these derivatives in the formula for the spectral score with

respect to ψx1, we end up with exactly the same frequency-domain and time-domain expressions.

Empirical researchers often assume that the common factors are white noise for identification

purposes, so that Gxx(λ) = 1 under the null. Since we make no assumptions on p and q,

our tests trivially apply in that situation too. Similarly, generalisations to test Arma(p,q) vs

Arma(p+k,q) in the common factor are straightforward, since they only involve higher order

autocovariances of fKt|∞. Similarly, it is easy to show that Arma(p+k,q) and Arma(p,q+k)

multiplicative alternatives are locally asymptotically equivalent, as in the case of univariate

tests for serial correlation in observable time series (see e.g. Godfrey (1988)).13 Finally, we

could also consider (multiplicative) seasonal alternatives.

3.2 Testing ARMA(p,q) vs ARMA(p+d,q) (or ARMA(p,q+d)) in specific
factors

Let ψ′u1 = (ψu11, . . . , ψuN1). In this case we have that

∂vec[Gyy(λ)]

∂ψ′u1
= EN

∂vecd[Guu(λ)]

∂ψ′u1
,

where EN is the “diagonalisation”matrix that maps vecd into vec (see Magnus (1988)). Straight-

forward algebraic manipulations allow us to write the score with respect to ψui1 under the null

of H0 : ψu1 = 0 as

∑T−1

j=0
cosλjG

−1
uiui(λj)[2πIuKi uKi

(λj)−GuKi uKi (λj)]

=
∑T−1

j=0
cosλj [2πIvKi vKi

(λj)−GvKi vKi (λj)].

Thus, the time domain counterpart to the spectral score with respect to ψui1 will be proportional

to the difference between the first sample autocovariance of vKit and its theoretical value underH0,

as expected. Joint tests that look at several idiosyncratic terms together, as well as the common

factor, can be easily obtained by combining the scores involved. As we shall see in sections 4.2

and 5, the component tests are rather good at identifying the source of the rejection.

3.3 Parameter uncertainty

So far we have implicitly assumed known model parameters under the null. In practice, some

of them will have to be estimated. Maximum likelihood estimation of the dynamic factor model

parameters can be done either in the time domain using the Kalman filter or in the frequency

domain.
13 It would also be possible to develop tests of Arma(p,q) against Arma(p+k,q+k) along the lines of Andrews

and Ploberger (1996). We leave those tests, which will also depend on the differences between sample and
population autocovariances of fKt|∞, for future research.
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The sampling uncertainty surrounding the sample mean π is asymptotically inconsequential

because the information matrix is block diagonal. The sampling uncertainty surrounding the

other parameters is not necessarily so. In fact, block diagonality of the components of the

information matrix corresponding to the parameters that define the alternative hypothesis, ψ,

and the parameters that define the null, θ, is only obtained in some special cases. One such

cases arises when c(e−iλ) = c and both common and idiosyncratic factors follow Ar(1) processes

with a common autoregressive coeffi cient. An important example are the static factor models

considered by Fiorentini and Sentana (2012). In that situation, all final prediction errors are

white noise, and one can safely ignore the estimation error in θ.

More generally, the solution is the standard one: replace the inverse of the (ψ,ψ) block of

the information matrix by the (ψ,ψ) block of the inverse information matrix in the quadratic

form that defines the LM test. For this reason, we provide computationally effi cient expressions

for the scores required to compute the information matrix in Appendix B. Importantly, the

dual nature of our proposed tests implies that they can be applied regardless of whether we have

estimated the model using a time domain or frequency domain log-likelihood.

4 Monte Carlo simulation

4.1 Size experiment

To evaluate possible finite sample size distortions, we generate 10,000 samples of length 500,

plus 50 for initialization, (roughly 4 decades of monthly data). The exact model that we simulate

and estimate under the null is y1,t
y2,t
y3,t

 =

 .1
.1
.1

+

 0.7
0.5
0.4

xt +

 u1,t
u2,t
u3,t

 ,
(1− .4L− .2L2)xt = ft,

(1 + .4L)u1,t = v1,t, (1− .6L)u2,t = v2,t, (1− .2L)u3,t = v3,t,

V (ft) = 1, vecd′[V (vt)] = (0.4, 0.3, 0.8).

We compute LM tests against:

1. First order residual autocorrelation in the common factor (χ21)

2. First and second order residual autocorrelation in the common factor (χ22)

3. First order residual autocorrelation in all the specific factors (χ23)
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4. First order residual autocorrelation in common and specific factors (χ24)

Importantly, all our tests are numerically invariant to whether in estimating the model we

normalise the variance of the common factor xt or its innovation ft to 1 because of the way we

compute the information matrix (see Dufour and Dagenais (1991)).

The p-value discrepancy plots (see Davidson and McKinnon (1998)) for the four test are

displayed in Figure 1. As can be seen, all tests have virtually no size distortions, with the joint

tests showing even smaller distortions than the tests that focus on the common factor only.

4.2 Power experiments

We first simulate and estimate 2,000 samples of length 500, plus 50 for initialization, in which

the DGP for the common factors has ψx(L) = (1 − .5L − .25L2 − .125L3 − . . .) = (1 − .5L)−1

but the same first and second-order autocorrelation as under the null, so that

xt = 0.874xt−1 + 0.037xt−2 + ft − 0.5ft−1. (5)

We also re-scale the loadings so as to maintain the same unconditional signal to noise ratio

as under the null in an attempt to isolate our power results from changes in the degree of

observability of the factors. Anything else is left unchanged. The results are reported in Figure

2. As expected, the test that focuses on the correct alternative hypothesis has the largest power,

followed by the test that also focuses on second order residual correlation in the common factor,

which wastes one degree of freedom. Not surprisingly, the least powerful test is only looking at

the specific factors, which nevertheless retains some small power because their estimators are

affected by the neglected serial correlation in the common factor.

We also simulate and estimate 2,000 samples of the same length as above in which the

DGP for the specific factors has ψui(L) = (1 + .2L), for i = 1, 2, 3, but the same first-order

autocorrelation as under the null, so that

u1,t = −0.418u1,t−1 − 0.044u1,t−2 + v1,t,
u2,t = 0.514u2,t−1 + 0.143u2,t−2 + v2,t,
u3,t = 0.185u3,t−1 + 0.077u3,t−2 + v3,t.

 (6)

Again, we re-scale V (vt) in order to match the same unconditional signal to noise ratio as

under the null, leaving everything else unchanged. The results are reported in Figure 3. Not

surprisingly, the test that focuses on the correct alternative hypothesis has the largest power,

followed by the joint test. This time, the tests that focus on the common factor have power

essentially equal to nominal size. However, in the experiment reported in Figure 4 we find that

when the neglected serial correlation in the specific factor is larger (ψui1 = −.6) the tests that

focus on the common factor regain some non-trivial power because their estimators under the null
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are contaminated by some of the neglected serial correlation in the specific factors. Nevertheless,

given that the rejection rates of the tests that look at the specific terms are essentially 100% for

all confidence levels, the results confirm once again that our test correctly identify the source of

the rejection.

Finally, we combine the DGPs (5) and (6) above, so that both common and the specific

factors are simulated under the alternative. As can be seen in Figure 5 the joint test is the

most powerful followed by the test on the specific factors. As expected, though, all test show

non-neglegible power in this case.

5 Empirical illustration

We initially replicate the results in Camacho, Pérez-Quirós and Poncela (2012), who con-

struct a monthly US coincident index by combining the indicators of economic activity previously

analysed by Stock and Watson (1991), Chauvet (1998) and Chauvet and Pigier (2008). Specif-

ically, they use the industrial production index (IPI), nonfarm payroll employment (EMP),

personal income less transfer payments (INC) and real manufacturing and trade sales (SAL).

The sample covers the period January 1967 to November 2010 for a total effective sample length

of 526 observations. As usual, the seasonally adjusted series are log-transformed and differenced

to achieve stationarity. Their basic single factor model specification is
IPIt
EMPt
INCt
SALt

 =


b1
b2
b3
b4

xt +


u1,t
u2,t
u3,t
u4,t

 ,

xt = φx,1xt−1 + φx,2xt−2 + ft,

ui,t = φi,1ui,t−1 + φi,2ui,t−2 + vi,t, i = 1, . . . , 4.

Each variable is individually standardised, the first two observations are discarded and the

scale indeterminacy is eliminated by setting V ar(ft) = 1. We report the spectral maximum

likelihood estimates of the parameters in Table 1.

Table 1: Spectral maximum likelihood estimates

x IPI EMP INC SAL
bi - 0.68 0.50 0.28 0.45
φ1 0.43 -0.25 0.24 -0.20 -0.36
φ2 0.22 -0.21 0.52 -0.05 -0.16
σ2 1 0.27 0.25 0.85 0.59
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These estimates are very close to the estimates obtained on the basis of the usual time

domain log-likelihood.

Our spectral LM test against first order neglected residual serial correlation in the common

factor takes the value of 4.28 with a p-value of 3.9%. The same specification test for all three

idiosyncratic factors is equal to 34.01, whose p-value is essentially zero. Not surprising, the joint

test (36.3) rejects the null of correct specification at all conventional levels of significance.

As we saw in section 4.2, though, the massive rejection of the null in the case of the idio-

syncratic factors might partly explain the mild rejection observed for the common factor. For

that reason, we re-estimate the model with the same Ar(2) specification for the common factor,

but allowing for Arma(2,1) idiosyncratic terms. This time we no longer reject when we look at

either the common factor or the idiosyncratic terms.

Camacho, Pérez-Quirós and Poncela (2012) argue that many features of the business cycle

are better represented by a Markov switching model than by a linear model. In this regard, we

prove in Appendix C that a simple two-regime Markov model for the mean of the common factor

would generate the autocorrelation structure of an Arma(1,1) process. Therefore, the Ar(2)

specification for xt should have been rejected. Nevertheless, it is conceptually possible that

the implied Arma(1,1) process could be such that an Ar(2) still provides a reasonable linear

approximation. In any case, our results suggest that their Markov switching model should allow

for more flexible dynamics in the idiosyncratic terms.

6 Conclusions and extensions

We derive computationally simple and intuitive expressions for score tests of neglected se-

rial correlation in common and idiosyncratic factors in dynamic factor models using frequency

domain methods. Our tests can focus on all state variables, the common factors only, the spe-

cific factors only, or indeed some of their elements. The implicit orthogonality conditions are

analogous to the conditions obtained by treating the Wiener-Kolmogorov-Kalman smoothed es-

timators of the innovations in common and idiosyncratic factors as if they were observed, but

they account for their final estimation errors.

We conduct Monte Carlo exercises to study the finite sample reliability and power of our

proposed tests. Our simulation results suggest that they have rather accurate sizes in finite

samples. They also confirm that our tests have power to detect neglected serial correlation in

common or specific factors, and that they are also systematically able to correctly identify the

source of the rejection.

Finally, we evaluate the empirical usefulness of our tests by assessing the dynamic factor
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model used by Camacho, Pérez-Quirós and Poncela (2012) to construct a coincident indicator

for the US.

The testing procedures developed in the previous sections can be extended in several inter-

esting directions. One obvious possibility would be to consider models with multiple common

factors. Although this would be intensive in notation, such an extension would be otherwise

straightforward after dealing with the usual identification issues before estimating the model

under the null. It should also be possible to extend our procedures to multivariate regressions

whose residuals follow a dynamic factor model. In that regard, Fiorentini and Sentana (2012)

provide a thorough comparison of the LM tests that we have considered with serial correlation

tests based on reduced form residuals, showing that there are clear power gains from exploiting

the cross-sectional dependence structure implicit in factor models.

Another worthwhile extension would cover restrictions on the dynamic factor loadings. Ex-

amples of interesting null hypotheses of this sort would be the equality of the impulse responses

of a common factor for two or more observed series, or a finite lag limit for those responses.

Given that we show in Appendix B that the scores of the dynamic loadings can be related to

the normal equations in a distributed lag regression of yt on xKt|∞, it should be fairly straight-

forward to derive those tests. Relatedly, we could also study the asymptotic power properties of

our proposed tests against such alternatives, or indeed alternatives in which there are missing

dynamic factors under the null.

Throughout the paper we have maintained the assumption of normality. To understand its

implications, let µt and Σt denote the conditional mean vector and covariance matrix of yt

given its past alone, which can be obtained from the prediction equations of the Kalman filter.

Given that the serial correlation parameters ψ effectively enter through µt only, the information

matrix equality should continue to hold for their scores. In any case, Dunsmuir and Hannan

(1976) and Dunsmuir (1979) already provided sandwich formulas for the asymptotic variances of

estimators obtained by maximising the spectral log-likelihood function (3). Similarly, it would

be straightforward to exploit the asymptotic orthogonality of the frequency components of the

Whittle likelihood to devise suitable bootstrap procedures (see Dahlhaus and Janas (1996) or

Kirch and Politis (2011)).

Although we have only considered state variables with rational spectral densities, in principle

our methods could be applied to long memory processes too. In this regard, it would be worth

exploring the long memory alternatives considered by Robinson (1991). More generally, it would

also be interesting to consider non-parametric alternatives such as the ones studied by Hong

(1996), in which the lag length is implicitly determined by the choice of bandwidth parameter
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in a kernel-based estimator of a spectral density matrix. Another potential extension would

directly deal with non-stationary factor models, such as the common stochastic trends models

in Peña and Poncela (2006), without transforming the observed variables to achieve stationarity.

In this regard, we would expect our proposed tests to remain valid in those circumstances too

because they focus on the stationary components of dynamic factors models.

Given their ubiquitousness in the recent empirical literature (see e.g. Bai and Ng (2008) and

the references therein), the extension of our methods to approximate factor models in which

(i) the cross-sectional dimension is non-negligible relative to the time series dimension; and (ii)

there is some mild contemporaneous and dynamic correlation between the idiosyncratic terms

would constitute a very valuable addition. Although Doz, Giannone and Reichlin (2012) have

recently proved the consistency of the Gaussian pseudo ML estimators that we have used in

such contexts, the extension of our tests would require asymptotic distributions under suitable

rates, which are as yet unknown.

Finally, it is worth mentioning that although we have exploited some specificities of dynamic

factor models, our procedures can be easily extended to most unobserved components time

series processes, and in particular to Ucarima models (see Maravall (1999)) and the state-

space models underlying the recent nowcasting literature (see Banbura, Giannone and Reichlin

(2010) and the references therein). We are currently pursuing some of these research avenues.
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Appendix

A Time domain tests

The simplest state space representation of a dynamic factor model with an AR(2) common

factor is:

1. Measurement equation:

yt = (c|0)

(
xt
xt−1

)
+ ut,

2. Transition equation: (
xt
xt−1

)
=

(
ρ1 ρ2
1 0

)(
xt−1
xt−2

)
+

(
1
0

)
ft.

Therefore, the Kalman filter prediction equations will be:(
xt|t−1
xt−1|t−1

)
=

(
ρ1 ρ2
1 0

)(
xt−1|t−1
xt−2|t−1

)
=

(
ρ1xt−1|t−1 + ρ2xt−2|t−1

xt−1|t−1

)
, (A1)

µt(θ) = yt|t−1 = (c|0)

(
xt|t−1
xt−1|t−1

)
= cxt|t−1,

Ωt|t−1 =

(
ω11t|t−1 ω21t|t−1
ω21t|t−1 ω22t|t−1

)
=

(
ρ1 ρ2
1 0

)(
ω11t−1|t−1 ω21t−1|t−1
ω21t−1|t−1 ω22t−1|t−1

)(
ρ1 1
ρ2 0

)
+

(
1
0

)
1
(

1 0
)

=

(
ρ21ω11t−1|t−1 + 2ρ1ρ2ω21t−1|t−1 + ρ22ω22t−1|t−1 + 1 ρ1ω11t−1|t−1 + ρ2ω21t−1|t−1

ρ1ω11t−1|t−1 + ρ2ω21t−1|t−1 ω11t−1|t−1

)
(A2)

and

Σt|t−1(θ) = (c|0) Ωt|t−1

(
c′

0′

)
+ Γ = cω11t|t−1c

′ + Γ.

Similarly, the updating equations will be:(
xt|t
xt−1|t

)
=

(
xt|t−1
xt−1|t−1

)
+

(
ω11t|t−1 ω21t|t−1
ω21t|t−1 ω22t|t−1

)(
c′

0′

)
Σ−1t|t−1(θ)(yt − cxt|t−1)

=

(
xt|t−1 + ω11t|t−1c

′Σ−1t|t−1(θ)(yt − cxt|t−1)

xt−1|t−1 + ω21t|t−1c
′Σ−1t|t−1(θ)(yt − cxt|t−1)

)
(A3)

and

Ωt|t = Ωt|t−1 −
(
ω11t|t−1 ω21t|t−1
ω21t|t−1 ω22t|t−1

)(
c′

0′

)
Σ−1t|t−1(θ) (c|0)

(
ω11t|t−1 ω21t|t−1
ω21t|t−1 ω22t|t−1

)
=

(
ω11t|t−1 − ω211t|t−1c

′Σ−1t|t−1(θ)c ω21t|t−1 − ω21t|t−1ω11t|t−1c′Σ−1t|t−1(θ)c

ω21t|t−1 − ω21t|t−1ω11t|t−1c′Σ−1t|t−1(θ)c ω22t|t−1 − ω221t|t−1c
′Σ−1t|t−1(θ)c

)
. (A4)
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If we call

ft|t = c′Σ−1t|t−1(θ)(yt − cxt|t−1) (A5)

and

$t|t = 1− ω11t|t−1c′Σ−1t|t−1(θ)c, (A6)

where we can interpret ft|t as the conditional expectation of ft given yt, yt−1, . . ., and $t|t as

the covariance between xt and ft conditional on yt, yt−1, . . ., then we can write the previous

expressions as (
xt|t
xt−1|t

)
=

(
xt|t−1 + ω11t|t−1ft|t
xt−1|t−1 + ω21t|t−1ft|t

)
and

Ωt|t =

(
ω11t|t−1$t|t ω21t|t−1$t|t
ω21t|t−1$t|t (ω22t|t−1 − ω221t|t−1ω

−1
11t|t−1) + ω221t|t−1ω

−1
11t|t−1$t|t

)
.

These expressions simplify considerably further when |Γ| > 0, in which case the Woodbury

formula yields

Σ−1t|t−1(θ) = Γ−1 − Γ−1cc′Γ−1

ω−111t|t−1 + c′Γ−1c
.

Specifically,

$t|t =
ω−111t|t−1

ω−111t|t−1 + c′Γ−1c

and

ft|t = $t|tc
′Γ−1(yt − cxt|t−1),

where we have used the fact that

c′Σ−1t|t−1(θ) = c′Γ−1 − c′Γ−1cc′Γ−1

ω−111t|t−1 + c′Γ−1c
=

ω−111t|t−1c
′Γ−1

ω−111t|t−1 + c′Γ−1c

and

c′Σ−1t|t−1(θ)c =
ω−111t|t−1c

′Γ−1c

ω−111t|t−1 + c′Γ−1c
.

In order to find the log-likelihood score, it is convenient to write

dµt(θ) = dc · xt|t−1 + c · dxt|t−1,

dΣt|t−1(θ) = dc · ω11t|t−1c′ + c · dω11t|t−1 · c′ + cω11t|t−1 · dc′ + dΓ,

whence

∂µt(θ)

∂θ′
= (xt|t−1 ⊗ IN )

∂c

∂θ′
+ c

∂xt|t−1
∂θ′

,

∂vec[Σt(θ)]

∂θ′
= (IN2 ⊗KNN )(cω11t|t−1 ⊗ IN )

∂c

∂θ′
+ (c⊗ c)

∂ω11t|t−1
∂θ′

+ EN
∂γ

∂θ′
,

∂

(
xt|t−1
xt−1|t−1

)
∂θ′

= [( xt−1|t−1 xt−2|t−1 )⊗ I2]

∂vec

(
ρ1 ρ2
1 0

)
∂θ′

+

(
ρ1 ρ2
1 0

) ∂

(
xt−1|t−1
xt−2|t−1

)
∂θ′
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and

∂vec(Ωt|t−1)

∂θ′
= (I4 ⊗K22)

[(
ρ1 ρ2
1 0

)
Ωt−1|t−1 ⊗ I2

] ∂vec( ρ1 ρ2
1 0

)
∂θ′

+

[(
ρ1 ρ2
1 0

)
⊗
(
ρ1 ρ2
1 0

)]
∂vec(Ωt−1|t−1)

∂θ′
.

These last two expressions can be considerably simplified if we differentiate (A1) and (A2)

directly. Specifically,

∂xt|t−1
∂θ′

= xt−1|t−1
∂ρ1
∂θ′

+ xt−2|t−1
∂ρ2
∂θ′

+ ρ1
∂xt−1|t−1
∂θ′

+ ρ2
∂xt−2|t−1
∂θ′

,

∂ω11t|t−1
∂θ′

= 2(ρ1ω11t−1|t−1 + ρ2ω21t−1|t−1)
∂ρ1
∂θ′

+ 2(ρ1ω21t−1|t−1 + ρ2ω22t−1|t−1)
∂ρ2
∂θ′

+ρ21
∂ω11t−1|t−1

∂θ′
+ 2ρ1ρ2

∂ω21t−1|t−1
∂θ′

+ ρ22
∂ω22t−1|t−1

∂θ′
,

∂ω21t|t−1
∂θ′

= ω11t−1|t−1
∂ρ1
∂θ′

+ ω21t−1|t−1
∂ρ2
∂θ′

+ ρ1
∂ω11t−1|t−1

∂θ′
+ ρ2

∂ω21t−1|t−1
∂θ′

,

and
∂ω22t|t−1
∂θ′

=
∂ω11t−1|t−1

∂θ′
.

In any case, we require expressions for

∂( xt−1|t−1 xt−2|t−1 )

∂θ

and
∂vec′(Ωt−1|t−1)

∂θ
,

which we can obtain by differentiating (A3) and (A4). Specifically,

dxt|t = dxt|t−1 + dω11t|t−1 · c′Σ−1t|t−1(θ)(yt − cxt|t−1) + ω11t|t−1 · dc′ ·Σ−1t|t−1(θ)(yt − cxt|t−1)

−ω11t|t−1c′Σ−1t|t−1(θ) · dΣt|t−1(θ) ·Σ−1t|t−1(θ)(yt − cxt|t−1)

−ω11t|t−1c′Σ−1t|t−1(θ) · dc · xt|t−1 − ω11t|t−1c′Σ−1t|t−1(θ)c · dxt|t−1

and

dxt−1|t = dxt−1|t−1 + dω21t|t−1 · c′Σ−1t|t−1(θ)(yt − cxt|t−1) + ω21t|t−1 · dc′ ·Σ−1t|t−1(θ)(yt − cxt|t−1)

−ω21t|t−1c′Σ−1t|t−1(θ) · dΣt|t−1(θ) ·Σ−1t|t−1(θ)(yt − cxt|t−1)

−ω21t|t−1c′Σ−1t|t−1(θ) · dc · xt|t−1 − ω21t|t−1c′Σ−1t|t−1(θ)c · dxt|t−1,
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whence

∂xt|t
∂θ′

=
∂xt|t−1
∂θ′

+ c′Σ−1t|t−1(θ)(yt − cxt|t−1)
∂ω11t|t−1
∂θ′

+ ω11t|t−1(yt − cxt|t−1)
′Σ−1t|t−1(θ)

∂c

∂θ′

−[(yt − cxt|t−1)
′Σ−1t|t−1(θ)⊗ ω11t|t−1c′Σ−1t|t−1(θ)]

∂vec[Σt(θ)]

∂θ′

−xt|t−1ω11t|t−1c′Σ−1t|t−1(θ)
∂c

∂θ′
− ω11t|t−1c′Σ−1t|t−1(θ)c

∂xt|t−1
∂θ′

(A7)

and

∂xt−1|t
∂θ′

=
∂xt−1|t−1
∂θ′

+ c′Σ−1t|t−1(θ)(yt − cxt|t−1)
∂ω21t|t−1
∂θ′

+ ω21t|t−1(yt − cxt|t−1)
′Σ−1t|t−1(θ)

∂c

∂θ′

−[(yt − cxt|t−1)
′Σ−1t|t−1(θ)⊗ ω21t|t−1c′Σ−1t|t−1(θ)]

∂vec[Σt(θ)]

∂θ′

−xt|t−1ω21t|t−1c′Σ−1t|t−1(θ)
∂c

∂θ′
− ω21t|t−1c′Σ−1t|t−1(θ)c

∂xt|t−1
∂θ′

.

Similarly,

dω11t|t = (1− 2ω11t|t−1c
′Σ−1t|t−1(θ)c)dω11t|t−1 − ω211t|t−1 · dc

′ ·Σ−1t|t−1(θ)c

+ω211t|t−1c
′Σ−1t|t−1(θ) · dΣt|t−1(θ) ·Σ−1t|t−1(θ)c− ω211t|t−1c

′Σ−1t|t−1(θ) · dc,

dω21t|t = (1− ω11t|t−1c′Σ−1t|t−1(θ)c)dω21t|t−1 − ω21t|t−1 · dω11t|t−1 · c′Σ−1t|t−1(θ)c

−ω21t|t−1ω11t|t−1 · dc′ ·Σ−1t|t−1(θ)c + ω21t|t−1ω11t|t−1c
′Σ−1t|t−1(θ) · dΣt|t−1(θ) ·Σ−1t|t−1(θ)c

−ω21t|t−1ω11t|t−1c′Σ−1t|t−1(θ) · dc

and

dω22t|t = dω22t|t−1 − 2ω21t|t−1c
′Σ−1t|t−1(θ)cdω21t|t−1 − ω221t|t−1 · dc

′ ·Σ−1t|t−1(θ)c

+ω221t|t−1c
′Σ−1t|t−1(θ) · dΣt|t−1(θ) ·Σ−1t|t−1(θ)c− ω221t|t−1c

′Σ−1t|t−1(θ) · dc,

whence

∂ω11t|t
∂θ′

= (1− 2ω11t|t−1c
′Σ−1t|t−1(θ)c)

∂ω11t|t−1
∂θ′

− 2ω211t|t−1c
′Σ−1t|t−1(θ)

∂c

∂θ′

+[c′Σ−1t|t−1(θ)⊗ ω211t|t−1c
′Σ−1t|t−1(θ)]

∂vec[Σt(θ)]

∂θ′
(A8)

∂ω21t|t
∂θ′

= (1− ω11t|t−1c′Σ−1t|t−1(θ)c)
∂ω21t|t−1
∂θ′

− ω21t|t−1c′Σ−1t|t−1(θ)c
∂ω11t|t−1
∂θ′

−2ω21t|t−1ω11t|t−1c
′Σ−1t|t−1(θ)

∂c

∂θ′
+ [c′Σ−1t|t−1(θ)⊗ ω21t|t−1ω11t|t−1c′Σ−1t|t−1(θ)]

∂vec[Σt(θ)]

∂θ′

and

∂ω22t|t
∂θ′

=
∂ω22t|t−1
∂θ′

− 2ω21t|t−1c
′Σ−1t|t−1(θ)c

∂ω21t|t−1
∂θ′

− 2ω221t|t−1c
′Σ−1t|t−1(θ)

∂c

∂θ′

+[c′Σ−1t|t−1(θ)⊗ ω221t|t−1c
′Σ−1t|t−1(θ)]

∂vec[Σt(θ)]

∂θ′
.
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However, in order to derive the LM test we only need to evaluate these derivatives under the

null of H0 : ρ2 = 0. In that case,

xt|t−1 = ρ1xt−1|t−1

and
∂xt|t−1
∂θ′

= xt−1|t−1
∂ρ1
∂θ′

+ xt−2|t−1
∂ρ2
∂θ′

+ ρ1
∂xt−1|t−1
∂θ′

.

Similarly,

Ωt|t−1 =

(
ρ21ω11t−1|t−1 + 1 ρ1ω11t−1|t−1
ρ1ω11t−1|t−1 ω11t−1|t−1

)
and

∂vec(Ωt|t−1)

∂θ′
= D2

 2ρ1ω11t−1|t−1 · ∂ρ1/∂θ′ + 2ρ1ω21t−1|t−1 · ∂ρ2/∂θ′ + ρ21 · ∂ω11t−1|t−1/∂θ′
ω11t−1|t−1 · ∂ρ1/∂θ′ + ω21t−1|t−1 · ∂ρ2/∂θ′ + ρ1 · ∂ω11t−1|t−1/∂θ′

∂ω11t−1|t−1/∂θ
′

 ,
whereD2 is the duplication matrix of order 2. Hence, when ρ2 = 0 we simply require expressions

for ∂xt−1|t−1/∂θ
′ and ∂ω11t−1|t−1/∂θ

′, which unfortunately we can only obtain recursively on

the basis of expressions (A7) and (A8).

We also require expressions for xt−2|t−1 and ω21t−1|t−1 under the null, as these quantities

are associated to the derivatives with respect to ρ2. In this sense, it is interesting to obtain the

derivatives with respect to this parameter when ρ2 = 0, which will be given by

∂µt(θ)

∂ρ2
= c

∂xt|t−1
∂ρ2

,

∂vec[Σt(θ)]

∂θ′
= (c⊗ c)

∂ω11t|t−1
∂ρ2

, (A9)

with

∂xt|t−1
∂ρ2

= xt−2|t−1 + ρ1
∂xt−1|t−1
∂ρ2

,

∂ω11t|t−1
∂ρ2

= 2ρ1ω21t−1|t−1 + ρ21
∂ω11t−1|t−1

∂ρ2
,

∂xt|t
∂ρ2

= (1− ω11t|t−1c′Σ−1t|t−1(θ)c)
∂xt|t−1
∂ρ2

+ c′Σ−1t|t−1(θ)(yt − cxt|t−1)
∂ω11t|t−1
∂ρ2

−ω11t|t−1c′Σ−1t|t−1(θ)c·(yt − cxt|t−1)
′Σ−1t|t−1(θ)c

∂ω11t|t−1
∂ρ2

= (1− ω11t|t−1c′Σ−1t|t−1(θ)c)

[
∂xt|t−1
∂ρ2

+ c′Σ−1t|t−1(θ)(yt − cxt|t−1)
∂ω11t|t−1
∂ρ2

]
and

∂ω11t|t
∂ρ2

= (1− 2ω11t|t−1c
′Σ−1t|t−1(θ)c+)

∂ω11t|t−1
∂ρ2

+ ω211t|t−1[c
′Σ−1t|t−1(θ)c]2

∂ω11t|t−1
∂ρ2

,

= (1− ω11t|t−1c′Σ−1t|t−1(θ)c)2
∂ω11t|t−1
∂ρ2
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where we have used (A9).

Interestingly, if we use expressions (A5) and (A6), we can finally write

∂xt|t
∂ρ2

= $t|t

(
∂xt|t−1
∂ρ2

+ ft|t
∂ω11t|t−1
∂ρ2

)
and

∂ω11t|t
∂ρ2

= $2
t|t
∂ω11t|t−1
∂ρ2

.

B Spectral scores

As we saw before, the spectral approximation to the log-likelihood function requires the com-

putation of the sample periodogram matrix Iyy(λj). Expression (2), though, is far from ideal

from a computational point of view, and for that reason we make use of the Fast Fourier Trans-

form (FFT). Specifically, given the T×N original real data matrixY = (y1, . . . ,yt, . . . ,yT )′, the

FFT creates the centred and orthogonalised T×N complex data matrix Z = (z0, . . . , zj , . . . , zT−1)
′

by effectively premultiplying Y − `Tπ′ by the T × T Fourier matrix W. On this basis, we can

easily compute Iyy(λj) as 2πzjz
∗
j , where z∗j is the complex conjugate transpose of zj . Hence,

the spectral approximation to the log-likelihood function for a non-singular Gyy(λ) becomes

−NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gyy(λj)| −
2π

2

T−1∑
j=0

z∗jG
−1
yy(λj)zj ,

which can be regarded as the log-likelihood function of T independent but heteroskedastic com-

plex Gaussian observations.

But since zj does not depend on π for j = 1, . . . , T − 1 because `T is proportional to the

first column of the orthogonal Fourier matrix and z0 = (ȳT −π), where ȳT is the sample mean

of yt, it immediately follows that the ML of π will be ȳT . As for the remaining parameters, the

score function will be given by:

dj(θ) =
1

2

∂vec′ [Gyy(λj)]

∂θ

[
G−1yy(λj)⊗G′−1yy (λj)

]
vec

[
2πzcjz

′
j −G′yy(λj)

]
,

where zcj = z∗′j is the complex conjugate of zj . Given that

dGyy(λ) = dc(e−iλ)Gxx(λ)c′(eiλ) + c(e−iλ)dGxx(λ)c′(eiλ) + c(e−iλ)Gxx(λ)dc′(eiλ) + dGuu(λ)

(see Magnus and Neudecker (1988)), it immediately follows that

dvec [Gyy(λ)] =
[
c(eiλ)Gxx(λ)⊗ IN

]
dc(e−iλ) +

[
IN ⊗ c(e−iλ)Gxx(λ)

]
dc(eiλ)

+
[
c(eiλ)⊗ c(e−iλ)

]
dGxx(λ) + ENdvecd [Guu(λ)] ,
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where En is the unique n2 × n “diagonalisation”matrix which transforms vec(A) into vecd(A)

as vecd(A) = E′nvec(A), and Kmn is the commutation matrix of orders m and n (see Magnus

(1988)). But

c(e−iλ) =

L∑
`=−F

c`(θ)e−i`λ, (B10)

so

dc(e−iλ) =
L∑

`=−F
dc`(θ)e−i`λ.

Consequently, we can write

dvec [Gyy(λ)] =

L∑
`=−F

{[
e−i`λc(eiλ)Gxx(λ)⊗ IN

]
+
[
IN ⊗ ei`λc(e−iλ)Gxx(λ)

]}
dc`(θ)

+
[
c(eiλ)⊗ c(e−iλ)

]
dGxx(λ) + ENdvecd [Guu(λ)] .

Hence, the Jacobian of vec [Gyy(λ)] will be

∂vec [Gyy(λ)]

∂θ′
=

L∑
`=−F

{[
e−i`λc(eiλ)Gxx(λ)⊗ IN

]
+
[
IN ⊗ ei`λc(e−iλ)Gxx(λ)

]} ∂c`
∂θ′

+
[
c(eiλ)⊗ c(e−iλ)

] ∂Gxx(λ)

∂θ′
+ EN

∂vecd [Guu(λ)]

∂θ′
.

If we combine this expression with the fact that[
G−1yy(λj)⊗G′−1yy (λj)

]
vec

[
zcjz
′
j −G′yy(λj)

]
= vec

[
2πG′−1yy (λ)zcjz

′
jG
′−1
yy (λ)−G′−1yy (λ)

]
and I′yy(λ) = zcjz

′
j we obtain:

2dj(θ) =
L∑

`=−F

∂c′`
∂θ

{ [
e−i`λGxx(λ)c′(eiλ)⊗ IN

]
+
[
IN ⊗ ei`λGxx(λ)c′(e−iλ)

] } vec [2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)
]

+
∂Gxx(λ)

∂θ

[
c′(eiλ)⊗ c′(e−iλ)

]
vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
+
∂vecd′ [Guu(λ)]

∂θ
ENvec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
=

L∑
`=−F

∂c′`
∂θ

vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)Gxx(λ)e−i`λ −G′−1yy (λ)c(eiλ)Gxx(λ)e−i`λ

+2πei`λGxx(λ)c′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)− ei`λGxx(λ)c′(e−iλ)G′−1yy (λ)

]
+
∂Gxx(λ)

∂θ
vec

[
2πc′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)− c′(e−iλ)G′−1yy (λ)c(eiλ)

]
+
∂vecd′ [Guu(λ)]

∂θ
ENvec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
.

Let us now try to interpret the different components of this expression. The first thing to

note is that

e−i`λvec
[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)Gxx(λ)−G′−1yy (λ)c(eiλ)Gxx(λ)

]
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and

ei`λvec
[
2πGxx(λ)c′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)−Gxx(λ)c′(e−iλ)G′−1yy (λ)

]
are complex conjugates because the conjugate of a product is the product of the conjugates, so

it suffi ces to analyse one of them.

The transfer function of the Wiener-Kolmogorov smoothed values of the common factor is

given by

Gxx(λ)c′(eiλ)G−1yy(λ).

As a result, the periodogram and spectral density of the smoothed values of the common factor

will be

IxKxK (λ) = 2πG2xx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)c(e−iλ),

GxKxK (λ) = G2xx(λ)c′(eiλ)G−1yy(λ)c(e−iλ),

respectively, while the spectral density of its final estimation error xt − xKt|∞ is

ω(λ) = Gxx(λ)−GxKxK (λ).

Similarly, the transfer function of the Wiener-Kolmogorov smoothed values of the specific

factors will be

Guu(λ)G−1yy(λ) = IN − c(e−iλ)Gxx(λ)c′(eiλ)G−1yy(λ).

As a result, the periodogram and spectral density matrix of the smoothed values of the specific

factors are given by

IuKuK (λ) = 2πGuu(λ)G−1yy(λ)Iyy(λ)G−1yy(λ)Guu(λ),

GuKuK (λ) = Guu(λ)G−1yy(λ)Guu(λ),

respectively, while the spectral density of their final estimation errors ut − uKt|∞ is

Guu(λ)−GuKuK (λ) = ω(λ)c(e−iλ)c′(eiλ).

Finally, the co-periodogram and co-spectrum between xKt|∞ and uKt|∞ will be

IxKuK (λ) = 2πGxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)Guu(λ),

GxKuK (λ) = Gxx(λ)c′(eiλ)G−1yy(λ)Guu(λ).

On this basis, if we further assume that Gxx(λ) > 0 and Guu(λ) > 0 we can write

2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)Gxx(λ)e−i`λ −G′−1yy (λ)c(eiλ)Gxx(λ)e−i`λ

= G′−1uu (λ)
[
2πe−i`λI′xKuK (λ)− e−i`λG′xKuK (λ)

]
,

2πc′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)c(eiλ)− c′(e−iλ)G′−1yy (λ)c(eiλ)

= G−2xx (λ) [2πIxKxK (λ)−GxKxK (λ)]
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and

2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ) = G′−1uu (λ)
[
2πI′uKuK (λ)−G′uKuK (λ)

]
G′−1uu (λ).

Therefore, the component of the score associated to c` will be the sum across frequencies of

terms of the form

G′−1uu (λ)
[
2πe−i`λI′xKuK (λ)− e−i`λG′xKuK (λ)

]
(and their conjugate transposes) which capture the difference between the cross-periodogram

and cross-spectrum of xKt−` and u
K
it inversely weighted by the spectral density of uit. As a result,

we can understand this term as arising from the normal equation in the spectral regression of

yit onto xt−` but taking into account the unobservability of the regressor.

Similarly, the component of the score associated to the parameters that determineGxx(λ) will

be the cross-product across frequencies of the product of the derivatives of the spectral density

of xt with the difference between the periodogram and spectrum of xKt inversely weighted by

the squared spectral density of xt. In this case, we can interpret this term as arising from a

marginal log-likelihood function for xt that takes into account the unobservability of xt.

Finally, the component of the score associated to the parameters that determine Guiui(λ) will

be the cross-product across frequencies of the product of the derivatives of the spectral density

of uit with the difference between the periodogram and spectrum of uKit inversely weighted by

the squared spectral density of uit. Once again, we can interpret this term as arising from the

conditional log-likelihood function of uit given xt that takes into account the unobservability of

uti .

We can then exploit the Woodbury formula

G−1yy(λ) = G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ),

ω(λ) = [G−1xx (λ) + c′(eiλt)G−1uu(λ)c(e−iλt)]−1,

which greatly simplifies the computations (see Sentana (2000)). Specifically, we will have that

Gxx(λ)c′(eiλ)G−1yy(λ) = Gxx(λ)c′(eiλ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
=
[
1− ω(λ)c′(eiλ)G−1uu(λ)c(e−iλ)

]
Gxx(λ)c′(eiλ)G−1uu(λ) = ω(λ)c′(eiλ)G−1uu(λ),

so

IxKxK (λ) = 2πω2(λ)c′(eiλ)G−1uu(λ)Iyy(λ)G−1uu(λ)c(e−iλ)
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and

GxKxK (λ) = Gxx(λ)c′(eiλ)G−1yy(λ)c(e−iλ)Gxx(λ)

= Gxx(λ)c′(eiλ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
c(e−iλ)Gxx(λ)

=
[
1− ω(λ)c′(eiλ)G−1uu(λ)c(e−iλ)

]
G2xx(λ)c′(eiλ)G−1uu(λ)c(e−iλ) = ω(λ)Gxx(λ)c′(eiλ)G−1uu(λ)c(e−iλ).

Similarly,

Guu(λ)G−1yy(λ) = Guu(λ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
= IN − ω(λ)c(e−iλ)c′(eiλ)G−1uu(λ) = IN − c(e−iλ)Gxx(λ)c′(eiλ)G−1yy(λ),

so

IuKuK (λ) = 2π
[
IN − ω(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
IN − ω(λ)c(eiλ)c′(e−iλ)G−1uu(λ)

]
and

GuKuK (λ) = Guu(λ)G−1yy(λ)Guu(λ) = Guu(λ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Guu(λ)

= Guu(λ)− ω(λ)c(e−iλ)c′(eiλ).

Finally,

IxKuK (λ) = 2πω(λ)c′(eiλ)G−1uu(λ)Iyy(λ)
[
IN − ω(λ)c(eiλ)c′(e−iλ)G−1uu(λ)

]
and

GxKuK (λ) = Gxx(λ)c′(eiλ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Guu(λ)

= Gxx(λ)c′(eiλ)
[
IN − ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)

]
= ω(λ)c′(eiλ).

We can then use those expressions to effi ciently compute the required expressions. In par-

ticular, we will get

Gxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)−Gxx(λ)c′(eiλ)G−1yy(λ)

= Gxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
− ω(λ)c′(eiλ)G−1uu(λ)

= Gxx(λ)c′(eiλ)G−1yy(λ)Iyy(λ)
[
IN − ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)

]
G−1uu(λ)− ω(λ)c′(eiλ)G−1uu(λ)

=
[
IxKuK (λ)− ω(λ)c′(eiλ)

]
G−1uu(λ),
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G−1yy(λ)Iyy(λ)G−1yy(λ)−G−1yy(λ)

=
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
−
[
G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
G−1uu(λ)

[
IN − ω(λ)c(e−iλ)c′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
IN − ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)

]
G−1uu(λ)

−G−1uu(λ)
[
Guu(λ)− ω(λ)c(e−iλ)c′(eiλ)

]
G−1uu(λ)

= G−1uu(λ) [IuKuK (λ)−GuKuK (λ)] G−1uu(λ)

and

c′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)c(e−iλ)−c′(eiλ)G−1yy(λ)c(e−iλ) = G−1xx (λ)[IxKxK (λ)−GxKxK (λ)]G−1xx (λ).

C Autocorrelation structure of a simpleMarkov switching model

Let st denote a binary Markov chain characterised by the following two parameters

P (st = 0|st−1 = 0) = p,

P (st = 1|st−1 = 1) = q.

As is well known, the stationary distribution of the chain is characterised by

π = P (st = 1) =
1− p

2− p− q .

It is easy to see that we can then write

(st − π) = (p+ q − 1)(st−1 − π) + ξt, (C11)

where

E(ξt|st−1 = 0) = E(ξt|st−1 = 1) = 0.

The proof of this statement follows from computing the four possible values that ξt can take,

and the corresponding probabilities conditional on the relevant value of st−1. In this sense,

tedious algebra shows that ξt is equal to

p− 1 when st = 0, st−1 = 0
p when st = 1, st−1 = 0
−q when st = 0, st−1 = 1

1− q when st = 1, st−1 = 1

Therefore, it follows from (C11) that st has the autocorrelation structure of an Ar(1) with

autoregressive coeffi cient p+ q − 1.
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Now let us define the following process

xt = µ(st) + εt,

where

µ(st) =

{
µl if st = 0
µh if st = 1

and εt ∼ N(0, σ2) independently of the past, present and future values of st, as well as of the

past values of εt.

Given that we can write µ(st) as an affi ne transformation of st (i.e. µ(st) = µl+(µh−µl)st),

it follows that µ(st) also has the autocorrelation structure of an Ar(1).

Finally, the results on contemporaneous aggregation of Arma models imply that xt, which

is the sum of an Ar(1) and uncorrelated white noise, will have the autocorrelation structure of

an Arma(1,1). Specifically, given that the autocovariance generating function of an Ar(1) with

autoregressive coeffi cient α is
ω2

(1− αL)(1− αL−1) ,

where ω2 is the variance of the innovations, the autocovariance function of the contemporane-

ously aggregated process will be

ω2

(1− αL)(1− αL−1) + σ2 =
ω2 + σ2(1− αL)(1− αL−1)

(1− αL)(1− αL−1) =
λ2(1− βL)(1− βL−1)
(1− αL)(1− αL−1) ,

where β and λ2, which are easily obtained by equating coeffi cients, correspond to the root of

the Ma polynomial and variance of the univariate Wold residuals, respectively.
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