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Introduction and motivation

Dynamic factor models have been used in macroeconomics and
finance for over 35 years as a way of capturing the cross-sectional and
dynamic correlations between multiple series in a parsimonious way.

The parameters are estimated by maximising the likelihood function
obtained as a by-product of the Kalman filter prediction equations or
from Whittle’s (1962) frequency domain asymptotic approximation.

The latent factors are filtered with the Kalman smoother or its
Wiener-Kolmogorov counterpart.

Many important modelling issues may arise in practice, such as the
number of factors or the identification of their effects.

Another non-trivial issue is the specification of the dynamics of
common and idiosyncratic factors.

We propose LM-based specification tests for neglected serial
correlation in those factors that are simple to implement and interpret.

Once a preferred model has been specified and estimated, our score
tests can be computed from simple statistics of the estimated factors.
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Exact dynamic factor model with a single common factor

 y1,t
...

yN,t

 =

 π1
...
πN

+

 c1,0
...

cN,0

xt +

 c1,1
...

cN,1

xt−1 +

 u1,t
...

uN,t

 ,

αx(L)xt = βx(L)ft, αui(L)ui,t = βui(L)vi,t,

(ft, v1,t, . . . , vN,t)|It−1;θ ∼ N [0, diag(1, γ1, . . . , γN )],

αx(L) and αui(L) are polynomials of orders px and pui , respectively, while
βx(L) and βui(L) are polynomials of orders qx and qui .

There are three different dynamic features: common factors, specific
factors and loadings, which if eliminated yield static factor analysis.

We consider hypothesis tests for px = p̄x vs px = p̄x + dx or pui = p̄ui
vs pui = p̄ui + dui , or the analogous hypotheses for qx and qui .

We assume the cross-sectional dimension, N , is fixed and let the time
series dimension, T , increase without bound.
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Other models

Structural Time Series and UCARIMA models

yt = Tt + Ct + St + It

Test for neglected serial correlation in the unobserved components.

Linear, time-invariant state space models

yt = π + C(θ)xt,

xt = A(θ)xt−1 + B(θ)ut,

ut|It−1;π,θ ∼ N [0,Ω(θ)].

Test for neglected serial correlation in ut or some of its elements.
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Related literature on specification testing in these models

Engle and Watson (1980, Cahiers du Séminaire d’Économétrie):
LM, time-domain.

Geweke and Singleton (1981, International Economic Review):
LR and Wald, frequency-domain.

Harvey (1989, Cambridge University Press):
LM, LR and Wald, time- and frequency- domains.

Fernández (1990, Journal of Time Series Analysis):
LM, frequency-domain.

Fiorentini and Sentana (2012, CEMFI WP 1211):
LM, time-domain.
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Example from FS (2012): White noise vs. AR(1)

Our baseline model is the static factor model

yt = π + cxt + ut, xt = ft, ut = vt,(
ft
vt

)
|It−1,θs ∼ N

[(
0
0

)
,

(
1 0
0 Γ

)]
,

which remains popular in empirical finance (except in term structure
applications).

The Kalman smoother yields the same factor estimates as the Kalman
filter updating equations, which have simple closed form expressions:

fKt|T = fKt|t = c′Σ−1 (yt − π) =
c′Γ−1

1 + c′Γ−1c
(yt − π) ,

vKt|T = vKt|t = ΓΣ−1 (yt − π) = yt − π − cfKt|t.
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Example from FS (2012): White noise vs. AR(1)

A potentially interesting alternative would be:

yt = π + cxt + ut, ut = vt,
xt = ψxt−1 + ft.

It reduces to the static specification under the null H0 : ψ = 0.

Otherwise, it has the autocorrelation structure of a Varma(1,1).

The average score w.r.t. ψ under H0 is

s̄ψT =
1

T

T∑
t=2

fKt|T f
K
t−1|T ,

which is analogous to the score that we would use to test for first
order serial correlation in ft if we could observe the latent factors.

However its asymptotic variance [c′(cc′+Γ)−1c]2 < 1 reflects the
unobservability of the factors.
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Testing ARMA(p,q) vs ARMA(p+d,q) (or ARMA(p,q+d))

When we move to testing say AR(1) vs AR(2) in the unobservable
factors, the model is already dynamic under the null and the Kalman
filter and smoother equations no longer coincide.

More importantly, those equations are recursive and therefore difficult
to characterise without solving a multivariate Riccati equation.

Although a Lagrange Multiplier test of the new null hypothesis in the
time domain is conceptually straightforward, the algebra is incredibly
tedious and the recursive scores difficult to interpret.

An alternative way to characterise a dynamic factor model is in the
frequency domain.

As we shall see, the frequency domain scores remain remarkably
simple, since they closely resemble the scores of the static model.
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Maximum likelihood in the frequency domain

We assume that the observed series are covariance stationary, at least
after a suitable transformation.

Under stationarity, the spectral density matrix is proportional to

Gyy(λ) = c(e−iλ)Gxx(λ)c′(eiλ) + Guu(λ),

Gxx(λ) =
βx(e−iλ)βx(eiλ)

αx(e−iλ)αx(eiλ)
,

Guu(λ) = diag[Gu1u1(λ), . . . , GuNuN (λ)],

Guiui(λ) = γi
βui(e

−iλ)βui(e
iλ)

αui(e
−iλ)αui(e

iλ)
,

which inherits the exact single factor structure of the unconditional
covariance matrix of a static factor model.
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Maximum likelihood in the frequency domain

Let
Iyy(λ) =

1

2πT

T∑
t=1

T∑
s=1

(yt − π)(ys − π)′e−i(t−s)λ

denote the periodogram matrix and λj = 2πj/T (j = 0, . . . T − 1)
the usual Fourier frequencies.
The discrete version of the (spectral) log-likelihood function is

−NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |Gyy(λj)|−
1

2

T−1∑
j=0

tr
{
G−1yy(λj)[2πIyy(λj)]

}
.

The continuous version replaces sums by integrals.
Computations can be considerably speeded up by exploiting that

G−1yy(λ) = G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλt)c′(eiλt)G−1uu(λ),

ω(λ) = [G−1xx (λ) + c′(eiλt)G−1uu(λ)c(e−iλt)]−1.

The MLE of π, which only enters through Iyy(λ), is the sample mean.
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Maximum likelihood in the frequency domain

The score w.r.t. all the remaining parameters is

d(θ) =
1

2

T−1∑
j=0

∂vec′[Gyy(λj)]

∂θ
M(λj)m(λj),

m(λ) = vec
[
2πI′yy(λ)−G′yy(λ)

]
,

M(λ) =
[
G−1yy(λ)⊗G′−1yy (λ)

]
.

Using ∗ to denote conjugate transpose, the information matrix is

Q =
1

4π

∫ π

−π

∂vec′[Gyy(λ)]

∂θ
M(λ)

[
∂vec[Gyy(λ)]

∂θ′
dλ

]∗
.

Consistent estimators will be provided either by the outer product of
the score or by

Φ(θ) =
1

2

T−1∑
j=0

∂vec′[Gyy(λj)]

∂θ
M(λj)

[
∂vec[Gyy(λj)]

∂θ′

]∗
.
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The (Kalman-)Wiener-Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed
estimators of the latent variables too.

Specifically, let

yt − π =

∫ π

−π
eiλtdZy(λ),

V [dZy(λ)] = Gyy(λ)dλ

denote Cramer’s spectral decomposition of the observed process
(Wold’s decomposition frequency-domain analogue).

The Wiener-Kolmogorov two-sided filter for the common factor xt at
each frequency is given by

c′(eiλ)Gxx(λ)G−1yy(λ)dZy(λ)

so that the spectral density of the smoother xKt|T as T →∞ is

G2
xx(λ)c′(eiλ)G−1yy(λ)c(e−iλ) = ω(λ)Gxx(λ)c′(eiλ)G−1uu(λ)c(e−iλ).
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The (Kalman-)Wiener-Kolmogorov filter

Hence, the spectral density of the final estimation error xt − xKt|T will
be given by

Gxx(λ)− c′(eiλ)G−1yy(λj)c(eiλ) = ω(λ).

Having obtained these, we can easily obtain the smoother for ft, f
K
t|T ,

by applying to xKt|T the one-sided filter

αx(e−iλ)/βx(e−iλ)

Likewise, we can derive its spectral density, as well as the spectral
density of its final estimaton error ft − fKt|T .

Finally, we can obtain the autocovariances of xKt|T , fKt|T and their final
estimation errors by applying the usual Fourier transformation

cov(zt, zt−k) =

∫ π

−π
eiλkGzz(λ)dλ.
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The minimal sufficient statistics for {xt} skip

Define xGt|T as the spectral GLS estimator of xt through the
transformation

[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ)G−1uu(λ)dZy(λ).

Similarly, define uGt|T though

{IN − [c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ)G−1uu(λ)}dZy(λ).

It is then easy to see that the joint spectral density of xGt|T and uGt|T
will be block-diagonal, with the (1,1) element being

Gxx(λ) + [c′(eiλ)G−1uu(λ)c(e−iλ)]−1

and the (2,2) block

Gyy(λ)− c(e−iλ)[c′(eiλ)G−1uu(λ)c(e−iλ)]−1c′(eiλ),

whose rank is N − 1.
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The minimal sufficient statistics for {xt}

This block-diagonality allows us to factorise the spectral log-likelihood
function of yt as the sum of the log-likelihood function of xGt|T , which

is univariate, and the log-likelihood function of uGt|T .

Importantly, the parameters characterising Gxx(λ) only enter through
the first component.

In contrast, the remaining parameters affect both components.

Moreover, we can easily show that
1 xGt|T = xt + ζGt|T , with xt and ζGt|T orthogonal at all leads and lags.

2 The smoothed estimator of xt obtained by applying the Wiener-
Kolmogorov filter to xGt|T coincides with xKt|T .

This confirms that xGt|T constitute minimal sufficient statistics for xt.

In addition, the degree of unobservability of xt depends exclusively on
the size of [c′(eiλ)G−1uu(λ)c(e−iλ)]−1 relative to Gxx(λ).
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AR(1) vs AR(2) for observable xt

Although all the previous calculations are straightforward, they might
seem daunting unless one is familiar with spectral methods.

Fortunately, they have remarkably simple time domain counterparts.

For pedagogical purposes, let us initially assume that xt is observable.

The model under the alternative is

(1− ψx1L)(1− αx1L)xt = ft.

Therefore, the null is H0 : ψx1 = 0.

This is a multiplicative alternative.

Instead, we could test H0 : αx2 = 0 in the additive alternative

(1− αx1L− αx2L2)xt = ft.

In that case, it would be more convenient to reparametrise the model
in terms of partial autocorrelations as α12 = α1/ (1− α2) , α22 = α2.

We stick to multiplicative alternatives, which cover MA terms too.

Gabriele Fiorentini Enrique Sentana () Specification tests for factor models 17 / 39



AR(1) vs AR(2) for observable xt

Under the alternative, the spectral density of xt is

σ2f
(1− αx1e−iλ)(1− αx1eiλ)

1

(1− ψx1e−iλ)(1− ψx1eiλ)
.

The derivative of Gxx(λ) w.r.t. ψx1 evaluated at the null is

∂Gxx(λ)

∂ψx1
= 2(e−iλ+eiλ)

σ2f
(1− αx1e−iλ)(1− αx1eiλ)

= 2 cosλGxx(λ).

Hence the spectral version of the score w.r.t. ψx1 under H0 is

T−1∑
j=0

cosλjG
−1
xx (λj)[2πIxx(λj)−Gxx(λj)] =

T−1∑
j=0

cosλj [2πIff (λj)],

where we have exploited the fact that

T−1∑
j=0

∂Gxx(λj)

∂ψx1
G−1xx (λj) =

T−1∑
j=0

cosλj = 0.
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AR(1) vs AR(2) for observable xt

Given that

Iff (λj) = γ̂ff (0) + 2

T−1∑
k=1

γ̂ff (k) cos(kλj),

the spectral version of the score becomes

T−1∑
j=0

cosλj [2πIff (λj)] = T [γ̂ff (1) + γ̂ff (T − 1)].

In turn, the time domain version of the score will be∑
t

(xt − αx1xt−1)(xt−1 − αx1xt−2) =
∑
t

ftft−1,

which is (almost) identical as γ̂ff (T − 1) = T−1xTx1.

Therefore, the spectral test is simply checking that the first sample
autocorrelation of ft coincides with its theoretical value under H0.
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AR(1) vs AR(2) in common factor

After some straightforward algebraic manipulations, we can show that
under the null of H0 : ψx1 = 0 this score can be written as∑T−1

j=0
cos(λj)G

−1
xx (λj)[2πIxKxK (λj)−GxKxK (λj)]

=
∑T−1

j=0
cos(λj)[2πIfKfK (λj)−GfKfK (λj)].

Once again, the time domain counterpart to the spectral score w.r.t.
ψx1 is (asymptotically) proportional to the difference between the first
sample autocovariance of fKt|T and its theoretical counterpart under
H0.

Therefore, the only difference with the observable case is that the
autocovariance of fKt|T , which is a forward filter of the Wold
innovations of yt, is no longer 0 when ψx1 = 0, although it
approaches 0 as the signal to noise ratio increases.
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AR(1) vs AR(2) in common factor: A simple example

Imagine that the model under the alternative is:

yt = π + cxt + ut, ut = vt,
(1− ψx1L)(1− αx1L)xt = ft,(

ft
vt

)
|It−1,θ ∼ N

[(
0
0

)
,

(
1 0
0 Γ

)]
.

Straighforward algebra shows that if ψx1 = 0 then xKt|T will have the

autocorrelation structure of an Ar(2), while fKt|T will follow an Ar(1)

with first order autocovariance (c′Γ−1c)αx1/(1− α2
fK

), where αfK is

1+α2
x1+(c′Γ−1c)−

√
[(1 + αx1)2+(c′Γ−1c)] [(1− αx1)2+(c′Γ−1c)]

2αx1

The larger (c′Γ−1c) is, the closer this autocovariance will be to 0.

The LM test of H0 : ψx1 = 0 will simply compare the first sample
autocovariance of fKt|T with its theoretical value above.
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AR(1) vs AR(2) in specific factors

Let ψ′u1 = (ψu11, . . . , ψuN1).

In this case we have that

∂vec[Gyy(λ)]

∂ψ′u1

= EN
∂vecd[Guu(λ)]

∂ψ′u1

,

where EN is the “diagonalisation” matrix that maps vecd into vec.

Straightforward algebraic manipulations allow us to write the score
w.r.t. ψui1 under the null of H0 : ψu1

= 0 as∑T−1

j=0
cos(λj)G

−1
uiui(λj)[2πIuKi uKi

(λj)−GuKi uKi (λj)]

=
∑T−1

j=0
cos(λj)[2πIvKi vKi

(λj)−GvKi vKi (λj)].

Thus, the time domain counterpart to the spectral score w.r.t. ψui1
will again be proportional for large T to the difference between the
first sample autocovariance of vKit|T and its theoretical value under H0.

Joint tests can be easily obtained by combining the scores involved.
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Parameter uncertainty

So far we have implicitly assumed known model parameters, but in
practice some of them will have to be estimated under the null.

Maximum likelihood estimation of the dynamic factor model
parameters can be done either in the time domain using the Kalman
filter or in the frequency domain.

The sampling uncertainty surrounding π is asymptotically
inconsequential because the information matrix is block diagonal.

The sampling uncertainty surrounding the other parameters is not
necessarily so.

The solution is the standard one: replace the inverse of the (ψ,ψ)
block of the information matrix by the (ψ,ψ) block of the inverse
information matrix in the quadratic form that defines the LM test.

We provide computationally efficient expressions for the entire
information matrix.

We also discuss some special cases in which it is block diagonal.
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Monte Carlo simulation: Size experiment skip

To evaluate possible finite sample size distorsions, we generate 10,000
samples of length 500 from the following heterogeneous dynamic
factor model: y1,t

y2,t
y3,t

 =

 .1
.1
.1

+

 0.7
0.5
0.4

xt +

 u1,t
u2,t
u3,t

 ,
(1− .4L− .2L2)xt = ft,

(1 + .4L)u1,t = v1,t, (1− .6L)u2,t = v2,t, (1− .2L)u3,t = v3,t,

V (ft) = 1, vecd′[V (vt)] = (0.4, 0.3, 0.8).

We then compute LM tests against
1 First order residual serial correlation in the common factor (χ2

1)
2 Second order residual serial correlation in the common factor (χ2

2)
3 First order residual serial correlation in all the specific factors (χ2

3)
4 First order residual serial correlation in both common and specific

factors (χ2
4)
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Size experiment (T=500)
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Figure 1: P−value discrepancy plots of dynamic specification tests
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Monte Carlo simulation: Power experiment I

We first simulate and estimate 2,000 samples of length 500 of a DGP in
which the Ma polynomial of the common factor is ψx(L) = (1− .5L)
while we simultaneously adjust its Ar polynomial to keep the same first
and second-order autocorrelations, so that

xt = 0.874xt−1 + 0.037xt−2 + ft − 0.5ft−1.

We also rescale the loadings so as to mantain the same unconditional
signal to noise ratio as under the null in order to make sure that our power
results are unaffected by the degree of observability of the factors.
Everything else is unchanged.
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Power when common factor is misspecified
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Figure 2: Rejection rates for ARMA(2,1) common factor     (ψ=.5)

Nominal size

R
ej

ec
tio

n 
pe

rc
en

ta
ge

 

 
First order residual correlation in common factor
Second order residual correlation in common factor
First order residual correlation in specific factors
Joint test of first order residual correlation in all factors

Gabriele Fiorentini Enrique Sentana () Specification tests for factor models 27 / 39



Monte Carlo simulation: Power experiment II

We also simulate and estimate 2,000 samples of length 500 of a DGP in
which the Ar polynomials of the specific factors are multiplied by
ψui(L) = (1 + .2L) for i = 1, 2, 3, while simultanously adjusted to
maintain the same first-order autocorrelation, so that

u1,t = −0.418u1,t−1 − 0.044u1,t−2 + v1,t,

u2,t = 0.514u2,t−1 + 0.143u2,t−2 + v2,t,

u3,t = 0.185u3,t−1 + 0.077u3,t−2 + v3,t.

In this case we rescale V (vt) in order to match the same unconditional
signal to noise ratio as under the null but we leave everything else
unchanged.
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Power when specific factors are misspecified
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Figure 3: Rejection rates for AR(2) specific factors    (ψ
i
=−.2)
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Monte Carlo simulation: Power experiment III

Finally, we simulate and estimate 2,000 samples of length 500 of a DGP
that combines the features of the previous two power experiments.

Once again, the unconditional signal to noise ratio is preserved.
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Power when all factors are misspecified
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Figure 5: Rejection rates for ARMA(2,1) common factor, AR(2) specific factors   (ψ=.5, ψ
i
=−.2) 
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Empirical application

In theory, the expenditure (GDP) and income (GDI) measures of
aggregate (real) production should be equal.

In practice, they differ because they rely on different sources.

Their difference, known as the “statistical discrepancy”, was regarded
by some macroeconomists as a curiosity in the National Income and
Product Accounts.

However, the Great Recession has substantially renewed interest in
the possibility of obtaining more reliable GDP growth figures by
combining those two measures.

In the early days, some national statistical offices computed a simple
equally weighted average.

More sophisticated methods would give higher weights to the more
precise GDP measures.

Nowadays, the Australian Bureau of Statistics reports a single official
GDP figure, and the US Department of Commerce Bureau of
Economic Analysis has seriously considered this possibility.
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Empirical application

Dynamic considerations matter, though, as pointed out by Smith,
Weale and Satchell (1998, REStud).

There at least two important reasons:

(a) The associated measurement errors should be stationary but they may
well be serially correlated.

(b) These two GDP measures should be cointegrated with the true GDP,
with cointegrating vector (1,-1).

A single factor model with unit loadings on an I(1) common factor
and covariance stationary specific factors provides a natural way of
capturing these features:[

y1,t
y2,t

]
=

[
1
1

]
xt +

[
u1,t
u2,t

]
,

(1− αxL)(∆xt − π) = ft,

(1− αu1L)(u1,t − δ1) = v1,t, (1− αu2L)(u2,t − δ2) = v2,t.
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Empirical application

We allow for systematic biases in the measurement errors through δ1
and δ2.

The difference between those biases determines the mean of the
statistical discrepancy while their levels fix the initial conditions.

The usual assumption that the covariance matrix of the common
factor innovations, ft, and the idiosyncratic factor innovations, v1t
and v2t, is diagonal turns out to be non-parametrically just identifying
in this case (subject to “admissibility”).

Testing for neglected serial correlation in common and idiosyncratic
factors is particularly relevant in this context because the
contemporaneously filtered GDP series and the succesive revisions as
future data becomes available will depend on the underlying Arma
parameters.

We look at US data from 1947Q1 to 2012Q3 (263 obs).
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Empirical application

The difference between (log) GDP and (log) GDI seems covariance
stationary, although rather persistent. plot

Therefore, in order to work with an invertible model whose spectral
density matrix has full rank at all frequencies we combine the
statistical discrepancy, y2t − y1t, and the equally weighted average of
the quarterly rates of growth of GDP and GDI, (∆y1t + ∆y2t)/2.

In principle, there are infinitely many other asymptotically equivalent
stationarity transformations of the two output measures, but (-1,1)
and (1-L)(.5,.5) seems rather natural.

In the time domain, we can avoid this indeterminacy by computing
the log-likelihood function in levels using a diffuse prior for the
non-stationary component of the initial observations.
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Empirical application

We initially estimate a model with Ar(1) dynamics in the common
factor, but white noise measurement errors.

The estimated model parameters suggest that GDI provides a much
better measure of output than GDP.

However, LM tests against Ar(1) dynamics in the measurement
errors massively reject their null.

The same is true of Ar(1) vs Ar(2) dynamics in the common factor,
but the test statistic is much lower.

For that reason, we estimate the model with Ar(1) dynamics in both
common factor and measurement errors.

This time we no longer reject when we look at each state variable
separately or all of them jointly, although there is weak evidence in
favour of higher order dynamics in the idiosyncratic terms.

Further, the parameter estimates suggest that GDP is far less noisy.

Reassuringly, this last result does not change when we repeat the
exercise allowing for Ar(2) dynamics in the measurement errors.
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Extensions

1 Multiple common factors:

A notational mess, but otherwise straightforward after dealing with the
usual identification issues before estimating the model under the null.

2 Overidentifying restrictions on the dynamic factor loadings

Straightforward too, since the corresponding scores can be related to
the normal equations in a distributed lag regression of yt on xKt|T .

3 Robustness to non-normality

We can always resort to the usual time-domain sandwich formulas or
their unusual frequency-domain analogues.
But given that the serial correlation parameters ψ effectively enter
through µt only, where µt denotes the conditional mean of yt given its
past alone obtained from the Kalman filter prediction equations, the
information matrix equality should continue to hold for their scores.

4 Other models

Although we have exploited some specificities of dynamic factor
models, our procedures can be easily extended to many other linear
state space models.
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Statistical discrepancy
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