Time-varying risk premium in large cross-sectional equity datasets

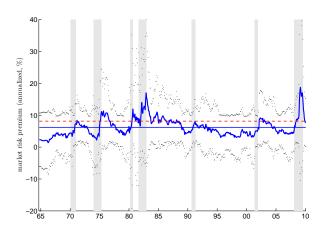
Patrick Gagliardini^a, Elisa Ossola^b and Olivier Scaillet^c

 a University of Lugano, b University of Lugano, c University of Genève and Swiss Finance Institute.

September, 2013

Goal of the paper

 Analysis of time-varying behaviour of risk premia in large equity datasets.



Two-pass regression methodology

$$R_{i,t} = a_i + b'_i f_t + \varepsilon_{i,t}, \ t = 1, ..., T, \ i = 1, ..., n$$

$$E[R_{i,t}] = b_i' \lambda$$

Two-pass methodology

(Black-Jensen-Scholes (1972), Fama-MacBeth (1973)):

- **1** time series OLS regression to estimate the factor loadings b_i ;
- $oldsymbol{\circ}$ cross-sectional OLS regression to estimate the vector of risk premia λ .

Usual setting:

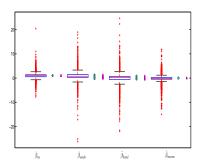
- time-invariant linear factor models of asset returns:
- portfolios with large T and fixed n (balanced panel).

This paper:

- time-varying linear factor models of asset returns;
- individual stocks with large T and large n (n >> T and unbalanced).

Individual stocks versus portfolios

Estimated factor loadings for individual stocks (box-plots), for 25 (circles) and 100 FF portfolios (triangles)



Sorting and pooling stocks into portfolios distorts information.

Data-snooping bias (Lo-MacKinlay (1990)).

Ang-Liu-Schwarz (2008), Lewellen-Nagel-Shanken (2010), Berk (2000)

Building blocks of the thesis

- 1. Derivation of no-arbitrage pricing restrictions
 - In a large economy (continuum of assets) Hansen-Richard (1987), Al-Najjar (1995, 1998)
 - With an approximate factor structure for excess returns Chamberlain-Rothschild (1983), Al-Najjar (1999)
 - With **conditional** factor models for excess returns Ferson-Harvey (1991,1999), Ferson-Schadt (1996), Ghysels (1998), Jagannathan-Wang (1996), and Petkova-Zhang (2005)

Building blocks of the thesis

- 1. Derivation of no-arbitrage pricing restrictions
 - In a large economy (continuum of assets) Hansen-Richard (1987), Al-Najjar (1995, 1998)
 - With an approximate factor structure for excess returns Chamberlain-Rothschild (1983), Al-Najjar (1999)
 - With conditional factor models for excess returns
 Ferson-Harvey (1991,1999), Ferson-Schadt (1996), Ghysels (1998),
 Jagannathan-Wang (1996), and Petkova-Zhang (2005)
- 2. A new two-pass cross-sectional estimator of the risk premia
 - Large unbalanced panel of returns
 - Large-sample properties with double asymptotics: $\mathbf{n}, \mathbf{T} \to \infty$ Bai-Ng (2002, 2006), Stock-Watson (2002), Bai (2003, 2009), Forni-Hallin-Lippi-Reichlin (2000, 2004, 2005), and Pesaran (2006)
 - Comparison with the classical framework: balanced panel and $T \to \infty$ with n fixed Shanken (1985,1992), Jagannathan-Wang (1998), Kan-Robotti-Shanken (2009), and Shanken-Zhou (2007)

3. Test of the asset pricing restrictions

- Based on the cross-sectional SSR Gibbons-Ross-Shanken (1985)
- Relation to the coefficient of determination R² of cross-sectional regression Lewellen-Nagel-Shanken (2009), and Kan-Robotti-Shanken (2009)

3. Test of the asset pricing restrictions

- Based on the cross-sectional SSR Gibbons-Ross-Shanken (1985)
- Relation to the coefficient of determination R² of cross-sectional regression Lewellen-Nagel-Shanken (2009), and Kan-Robotti-Shanken (2009)
- 4. Empirical analysis comparing results with CRSP **individual stock returns** and Fama-French 25 portfolios
 - Use of individual stocks versus portfolios
 Litzenberger-Ramaswamy (1979), Berk (2000), Ang-Liu-Schwarz (2008), and
 Avramov-Chordia (2006)
 - Risk premia estimates disagree between individual stocks and portfolios

Outline of the presentation

- Introduction √
- Conditional factor model
 - Model setting
 - Functional specification of time-varying coefficients
 - ► Estimation of betas and risk premia
 - Testing of the asset pricing restrictions
- Empirical results
- Conclusions

Conditional factor model: Model setting

Excess returns generation and asset pricing restrictions:

The excess return $R_t(\gamma)$ of asset $\gamma \in [0,1]$ at date t=1,2,..., satisfies

$$R_{t}(\gamma) = \beta_{t}(\gamma)' x_{t} + \varepsilon_{t}(\gamma), \qquad (1)$$

where:

- $x_t = (1, f_t')'$ and f_t is the $K \times 1$ random vector of observable factors;
- $\beta_t(\gamma) = (a_t(\gamma), b_t(\gamma)')'$ contains time-varying coefficients;
- $\varepsilon_{t}(\gamma)$ is a random vector of error terms s.t. $E\left[\varepsilon_{t}(\gamma)|\mathcal{F}_{t-1}\right]=0$ and $Cov\left[\varepsilon_{t}(\gamma), f_{t}|\mathcal{F}_{t-1}\right]=0$ for any $\gamma\in[0,1]$.

(Hansen-Richard (1987))

Assumption 1:

Approximate factor structure: (Chamberlain-Rothschild (1983)) conditional var-cov matrix $\Sigma_{\varepsilon,t,n} = [Cov [\varepsilon_t (\gamma_i), \varepsilon_t (\gamma_j) | \mathcal{F}_{t-1}]]_{i,j}$ for i,j=1,...,n is s.t. $n^{-1}eig_{max}(\Sigma_{\varepsilon,t,n}) \stackrel{L^2}{\to} 0$ as $n \to \infty$, for a.e. sequences (γ_i) in $[0,1]^{\infty}$; No asymptotic arbitrage opportunities: there are no portfolios that approximate arbitrage opportunities when the number of assets increases.

Proposition 1: Asset pricing restriction

There exists a unique vector $\nu_t \in \mathbb{R}^K$ such that

$$a_t(\gamma) = b_t(\gamma)' \nu_t$$
 (i.e., $E[R_t(\gamma) | \mathcal{F}_{t-1}] = b_t(\gamma)' \lambda_t$) (2)

for almost all $\gamma \in [0,1]$, where $\lambda_t = \nu_t + E\left[f_t | \mathcal{F}_{t-1}\right]$ is the vector of time-varying risk premia.

Large economy with a continuum of assets:

- ⇒ derivation of an empirically testable exact pricing restriction.
- ⇒ robustness of factor structures to asset repackaging (Al-Najjar (1999)).

Unbalanced nature of the panel:

 $I_t(\gamma)$ admits value 1 if the return of asset γ is observable at date t, and 0 otherwise (Connor-Korajczyk (1987)).

The sampling scheme:

A sample of n assets is obtained by drawing i.i.d. indices γ_i according to a probability distribution G on [0, 1].

- ⇒ cross-sectional limits exist and are invariant to reordering of assets.
- \Rightarrow sample of *n* assets and *T* observations of excess returns $R_{i.t} = R_t(\gamma_i), I_{i.t} = I_t(\gamma_i), \varepsilon_{i,t} = \varepsilon_t(\gamma_i)$ and $\sigma_{ii,t} = E\left[\varepsilon_{i,t}\varepsilon_{i,t}|\mathcal{F}_t,\gamma_i,\gamma_i\right]$ for i = 1,...,n and t = 1,...,T.
- \Rightarrow random coefficient panel model with $\beta_{i,t} = \beta_t(\gamma_i)$.

Functional specification of time-varying coefficients

Information set \mathcal{F}_{t-1} contains lagged observations of:

- $Z_t \in \mathbb{R}^p$, vector of common instruments:
 - the constant and the observable factors f_t ,
 - ▶ additional observable variables Z_t^* .
- $Z_{i,t} \in \mathbb{R}^q$, vector of asset-specific instruments:
 - firm characteristics,
 - stocks returns.

Assumption 2:

```
Factor loadings: b_t(\gamma) = B(\gamma) Z_{t-1} + C(\gamma) Z_{t-1}(\gamma), where B(\gamma) \in \mathbb{R}^{K \times p} and C(\gamma) \in \mathbb{R}^{K \times q}, for any \gamma \in [0, 1] and t = 1, 2, ...; Risk premia: \lambda_t = \Lambda Z_{t-1}, where \Lambda \in \mathbb{R}^{K \times p}, for any t;
```

Factors: $E[f_t|\mathcal{F}_{t-1}] = FZ_{t-1}$, where $F \in \mathbb{R}^{K \times p}$, for any t.

Assumption 2 and Proposition 1 imply:

$$a_{t}(\gamma) = Z'_{t-1}B(\gamma)'(\Lambda - F)Z_{t-1} + Z_{t-1}(\gamma)'C(\gamma)'(\Lambda - F)Z_{t-1}.$$

• The conditional factor model (1), for the sample observations, becomes

$$R_{i,t} = \beta_i' x_{i,t} + \varepsilon_{i,t}, \tag{3}$$

where:

- ▶ regressor $x_{i,t}$ involves cross-terms of instruments Z_{t-1} , $Z_{i,t-1}$ and f_t ;
- ▶ time-invariant parameters $\beta_i = \left(\beta'_{1,i}, \beta'_{2,i}\right)'$ are (unconditional) transformations of matrices B_i , C_i , Λ and F.
- The asset pricing restriction (2) implies the parameter restriction

$$\beta_{1,i} = \beta_{3,i}\nu,\tag{4}$$

where:

- $\beta_{3,i}$ is a trasformation of matrices B_i and C_i ;
- $\nu = \text{vec} \left[\Lambda' F' \right].$

Estimation of betas and risk premia

1 Time series regression for the first pass:

$$\hat{\beta}_{i} = \left(\sum_{t} I_{i,t} x_{i,t} x_{i,t}' \right)^{-1} \sum_{t} I_{i,t} x_{i,t} R_{i,t}, \ i = 1, ..., n.$$

Problem: If $T_i = \sum_t I_{i,t}$ is small, the inversion of $\hat{Q}_{x,i} = \frac{1}{T_i} \sum_t I_{i,t} x_{i,t} x_{i,t}'$ can be unstable.

Idea: Apply a trimming approach:

$$\mathbf{1}_{i}^{\chi}=\mathbf{1}\left\{\mathit{CN}\left(\hat{Q}_{\mathsf{x},i}\right)\leq\chi_{1,\mathit{T}},\tau_{i,\mathit{T}}\leq\chi_{2,\mathit{T}}\right\},$$

with $\chi_{1,T} > 0$ and $\chi_{2,T} > 0$ and where $CN\left(\hat{Q}_{x,i}\right) = \sqrt{\frac{eig_{max}\left(\hat{Q}_{x,i}\right)}{eig_{min}\left(\hat{Q}_{x,i}\right)}}$ is the condition number of $\hat{Q}_{x,i}$ (Greene (2008)), and $\tau_{i,T} = T/T_{i}$.

Oross-sectional WLS regression for the second pass:

$$\hat{\nu} = \left(\sum_{i} \hat{\beta}'_{3,i} \hat{\mathbf{w}}_{i} \hat{\beta}_{3,i}\right)^{-1} \sum_{i} \hat{\beta}'_{3,i} \hat{\mathbf{w}}_{i} \hat{\beta}_{1,i},$$

where $\hat{w}_i = \mathbf{1}_i^{\chi} \left(diag \left[\hat{v}_i \right] \right)^{-1}$ and \hat{v}_i is a consistent estimator of $v_i = AsVar \left[\sqrt{T} \left(\hat{\beta}_{1,i} - \hat{\beta}_{3,i} \nu \right) \right]$.

The estimator of time-varying risk premia is

$$\hat{\lambda}_t = \hat{\Lambda} Z_{t-1},$$

where $\hat{\Lambda}$ is deduced by

$$\operatorname{vec}\left[\hat{\Lambda}'\right] = \hat{\nu} + \operatorname{vec}\left[\hat{F}'\right],$$

and \hat{F} is the estimator of F in the SUR regression: $f_t = FZ_{t-1} + u_t$.

Large sample properties

Asymptotic scheme: **simultaneous double asymptotic**

 $n, T \to \infty$ such that $n = T^{\bar{\gamma}}$ with $\bar{\gamma} > 0$.

Assumption 3: Heteroschedasticity and cross-sectional dependence

a)
$$E\left[\varepsilon_{i,t} | \left\{ \varepsilon_{j,\underline{t-1}}, \gamma_{j}, j=1,...,n \right\}, \mathcal{F}_{\underline{t}} \right] = 0$$
, with $\varepsilon_{j,\underline{t-1}} = \left\{ \varepsilon_{j,t-1}, \varepsilon_{j,t-2}, \cdots \right\};$
b) $M^{-1} \leq E\left[\varepsilon^{2} | \mathcal{F}_{i}, \varepsilon_{i} \right] = \sigma_{i} \leq M$, $i=1$, n for a constant $M \leq c$

b)
$$\overline{M^{-1}} \leq E\left[\varepsilon_{i,t}^2 | \mathcal{F}_t, \gamma_i\right] = \sigma_{ii,t} \leq M, \quad i = 1, ..., n \text{ for a constant } M < \infty;$$

c)
$$E\left[\frac{1}{n}\sum_{i,j}E\left[\left|\sigma_{ij,t}\right|^{2}\left|\gamma_{i},\gamma_{j}\right]\right]^{1/2} \leq M$$
, with $\sigma_{ij,t}=E\left[\varepsilon_{i,t}\varepsilon_{j,t}\left|\mathcal{F}_{t},\gamma_{i},\gamma_{j}\right]\right]$.

Assumption 3 accommodates non Gaussian, conditionally heteroschedastic, weakly serially and cross-sectionally dependent error terms.

Proposition 2: Asymptotic distribution

As $n, T \to \infty$ such that $n = o(T^3)$, estimators $\hat{\nu}$, $\hat{\Lambda}$ and $\hat{\lambda}_t$ are consistent and asymptotically normal:

a)
$$\sqrt{nT}\left(\hat{\nu}-\nu-\frac{1}{T}\hat{B}_{\nu}\right)\Rightarrow N\left(0,\Sigma_{\nu}\right),$$
 where \hat{B}_{ν}/T is a bias term;

b)
$$\sqrt{T}vec\left[\hat{\Lambda}'-\Lambda\right]\Rightarrow N\left(0,\Sigma_{\Lambda}\right)$$
, where

$$\Sigma_{\Lambda} = \left(I_{\mathcal{K}} \otimes Q_{z}^{-1}\right) \Sigma_{u} \left(I_{\mathcal{K}} \otimes Q_{z}^{-1}\right),$$

with
$$Q_z = E\left[Z_t Z_t'\right]$$
 and $\Sigma_u = E\left[u_t u_t' \otimes Z_{t-1} Z_{t-1}'\right]$;

c)
$$\sqrt{T} \left(\hat{\lambda}_t - \lambda_t \right) \Rightarrow N \left(0, H_{t-1} \Sigma_{\Lambda} H'_{t-1} \right)$$
, where H_{t-1} is a trasformation of Z_{t-1} .

Estimation of ν does not affect accuracy of risk premia estimates.

Properties:

- Estimators $\hat{\nu}$, $\hat{\Lambda}$ and $\hat{\lambda}_t$ feature different convergence rates \sqrt{nT} and \sqrt{T} .
- Bias term \hat{B}_{ν}/T is induced by the Error-in-Variable (EIV) problem.

Time-invariant case ($Z_t = 1$ and $Z_{i,t} = 0$):

- $\hat{\lambda} = \hat{\nu} + \frac{1}{T} \sum_t f_t$ and $\hat{\nu} = \left(\sum_i \hat{w}_i \hat{b}_i \hat{b}_i' \right)^{-1} \sum_i \hat{w}_i \hat{b}_i \hat{a}_i$ with $\hat{w}_i = \hat{v}_i^{-1}$;
- for $n, T \rightarrow \infty$, $\sqrt{T} \left(\hat{\lambda} \lambda \right) \Rightarrow N(0, \Sigma_f)$;
- for fixed n, $T \to \infty$, $\sqrt{T} \left(\hat{\lambda} \lambda \right) \Rightarrow N \left(0, \Sigma_f + \frac{1}{n} \Sigma_{\nu} \right)$ (Shanken (1992), Jagannathan-Wang (1998)).

Link with the well-known incidental parameters problem in the fixed effects nonlinear panel literature

Write the time-invariant factor model, with asset pricing restriction $a_i = b'_i \nu$, as:

$$R_{i,t} = b_i'(f_t + \nu) + \varepsilon_{i,t},$$

where the b_i are the individual effects and ν is the common parameter.

Hahn-Kuersteiner (2002), Hahn-Newey (2004)): $y_{i,t} \sim h(\cdot; b_i, \nu)$

- ullet Similar type of analytical bias correction for the estimator of u.
- Same condition $n = o(T^3)$ for the asymptotic analysis.
- However, our setting is semi-parametric and accommodates cross-sectional dependence.

Estimation of asymptotic variance $\Sigma_{ u}$

Problem: Σ_{ν} involves the double sum

$$S_{v_3} = \lim_{n \to \infty} E\left[\frac{1}{n} \sum_{i,j} \frac{\tau_i \tau_j}{\tau_{ij}} \left(Q_{x,i}^{-1} S_{ij} Q_{x,j}^{-1}\right) \otimes v_{3,i} v_{3,j}'\right],$$

over $S_{ij} = E[\varepsilon_{i,t}\varepsilon_{j,t}x_{i,t}x_{i,t}'|\gamma_i,\gamma_j]$, where $v_{3,i} = vec[\beta_{3,i}'w_i]$.

Plugging-in $\hat{S}_{ij} = \frac{1}{T_{ij}} \sum_t I_{i,t} I_{j,t} \hat{\varepsilon}_{i,t} \hat{\varepsilon}_{j,t} x_{i,t} x'_{j,t}$ leads to divergent accumulation of statistical errors.

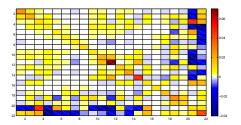
Idea:

Assume a sparsity structure for the S_{ij} and use a thresholded estimator (Bickel-Levina (2008), Fan-Liao-Mincheva (2011))

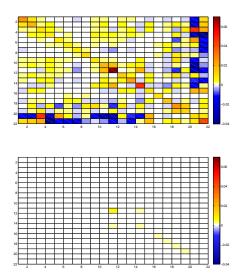
$$\tilde{S}_{ij} = \hat{S}_{ij} \mathbf{1}_{\|\hat{S}_{ii}\| \geq \kappa}.$$

Sparsity condition is applied on the error terms and *not* on the excess returns!

Average correlation matrix of residuals of individual stocks grouped by industrial sectors (Ferson-Harvey (1999)).



Average correlation matrix of residuals of individual stocks grouped by industrial sectors (Ferson-Harvey (1999)).



Testing of the asset pricing restriction

 \mathcal{H}_0 : there exists $\nu \in \mathbb{R}^{pK}$ such that $\beta_1(\gamma) = \beta_3(\gamma)\nu$, for almost all $\gamma \in [0,1]$.

- ullet The statistic is $\hat{\xi}_{nT} = T\sqrt{n}\left(\hat{Q}_{\mathsf{e}} rac{1}{T}\hat{B}_{\xi}
 ight),$ where
 - $\hat{Q}_e = \frac{1}{n} \sum_i \hat{e}'_i \hat{w}_i \hat{e}_i$, with $\hat{e}_i = \hat{\beta}_{1,i} \hat{\beta}_{3,i} \hat{\nu}$, is the cross-sectional weighted SSR (Gibbons-Ross-Shanken (1989));
 - $\hat{B}_{\xi} = 0.5p(p+1) + pq$ is the recentering term.

Proposition 3: Asymptotic distribution of the test statistic under $\mathcal{H}_{\mathbf{0}}$

Under \mathcal{H}_0 , we have $\tilde{\Sigma}_{\xi}^{-1/2}\hat{\xi}_{nT} \Rightarrow N(0,1)$, as $n,T\to\infty$ such that $n=o(T^2)$, where $\tilde{\Sigma}_{\xi}$ is an estimator of the asymptotic variance that involves the thresholded estimator \tilde{S}_{ii} .

• More restrictive condition on the relative rate of n and T wrt Prop. 2.

Data description

Base assets:

- 9,936 stocks with monthly returns from Jul1964 to Dec2009 after merging CRSP and Compustat databases;
- 25 and 100 Fama-French (FF) monthly portfolios returns.

Factors:

• $f_t = (r_{m,t}, r_{smb,t}, r_{hml,t}, r_{mom,t}) = (market, size, value, momentum)$.

Instrumental variables:

- common variables $Z_t = (1, Z_t^*)'$:
 - term spread: difference between yields on 10-year Treasurys and 3-month T-bills;
 - default spread: yield difference between Moody's Baa and Aaa-rated corporate bonds.
- firm characteristics Z_{i,t}:
 - book-to-market equity.

Estimated risk premia for the time-invariant models

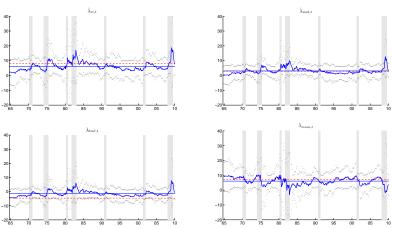
	Stocks ($n=9,936,\ n^\chi=9,902$)		Portfolios ($n = n^{\chi} = 25$)	
	bias corrected estimate (%)	95% conf. interval	point estimate (%)	95% conf. interva
		Four-factor model		
λ_{m}	8.14	(3.26, 13.02)	5.70	(0.73, 10.67)
$\lambda_{\it smb}$	2.86	(-0.50, 6.22)	3.02	(-0.48, 6.51)
$\lambda_{\it hml}$	-4.60	(-8.06, -1.14)	4.81	(1.21, 8.41)
λ_{mom}	7.16	(2.56, 11.75)	34.03	(9.98, 58.07)
		Fama-French mode	I	
λ_{m}	7.77	(2.89, 12.65)	5.04	(0.11, 9.97)
$\lambda_{\it smb}$	2.64	(-0.72, 5.99)	3.00	(-0.42, 6.42)
$\lambda_{\it hml}$	-5.18	(-8.65, -1.72)	5.20	(1.66, 8.74)
		САРМ		
λ_{m}	7.42	(2.54, 12.31)	6.98	(1.93, 12.02)

Estimated ν for the time-invariant models

	Stocks ($n=9,936,\ n^\chi=9,902$)		Portfolios ($n = n^{\chi} = 25$)	
	bias corrected estimate (%)	95% conf. interval	point estimate (%)	95% conf. interval
		Four-factor model		
$\nu_{\mathbf{m}}$	3.29	(2.88, 3.69)	0.85	(-0.10, 1.79)
$ u_{smb}$	-0.41	(-0.95, 0.13)	-0.26	(-1.24, 0.72)
$\nu_{\it hml}$	-9.38	(-10.12, -8.64)	0.03	(-0.95, 1.01)
$\nu_{ extit{mom}}$	-1.47	(-2.86, -0.08)	25.40	(1.80, 49.00)
		Fama-French mode	I	
$\nu_{\mathbf{m}}$	2.92	(2.48, 3.35)	0.18	(-0.51, 0.87)
$ u_{smb}$	-0.63	(-1.11, -0.15)	-0.27	(-0.93, 0.40)
$\nu_{\it hml}$	-9.96	(-10.62, -9.31)	0.41	(-0.32, 1.15)
		САРМ		
$\nu_{\mathbf{m}}$	2.57	(2.17, 2.97)	2.12	(0.85, 3.40)

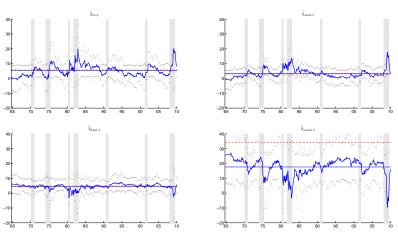
Paths of estimated risk premia with n = 9,936

Annualized % risk premia for individual stocks



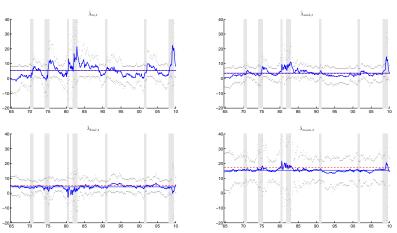
Paths of estimated risk premia with n = 25

Annualized % risk premia for Fama-French portfolios



Paths of estimated risk premia with n = 100

Annualized % risk premia for Fama-French portfolios



Effects of vec[F'] and ν on time-varying risk premia

		$\mathit{vec}\left[\mathit{F}' ight]$	ν (n = 9,936)	ν (n = 25)
	const	4.8322	1.3744	0.5251
		(0.2653, 9.3990)	(0.6791, 2.0697)	(-0.4704, 1.5206)
m		3.0353	-0.6032	-0.2916
	ds_{t-1}	(-2.6803, 8.7509)	(-1.2964, 0.0899)	(-1.1614, 0.5782)
		1.8677	-0.9254	0.0828
	ts_{t-1}	(-2.8399, 6.5754)	(-1.5914, -0.2593)	(-0.6660, 0.8316)
		3.2739	-0.2130	0.0607
	const	(0.0410, 6.5067)	(-0.8933, 0.4674)	(-0.9898, 1.1112)
smb		2.5468	-0.5948	0.4134
SIIID	ds_{t-1}	(-0.5998, 5.6934)	(-1.1622, -0.0273)	(-0.6129, 1.4397)
	_	0.2855	-0.2157	-0.1966
	ts_{t-1}	(-2.6271, 3.1982)	(-0.7584, 0.3269)	(-0.9679, 0.5746)
	const	4.7772	-6.1642	-0.2267
		(1.7905, 7.7639)	(-6.8891, -5.4393)	(-1.3134, 0.8601)
hml	ds_{t-1}	-1.7898	3.5981	0.2187
		(-5.5963, 2.0167)	(2.8651, 4.3311)	(-1.0354, 1.4728)
	ts_{t-1}	0.8933	-0.4292	-0.0073
		(-2.2598, 4.0465)	(-1.0310, 0.1726)	(-0.8758, 0.8612)
	const	8.6543	-2.5592	9.0179
		(-4.2482, 13.0605)	(-3.4360, -1.6825)	(0.4373, 17.5986)
mom	ds_{t-1}	-7.3714	6.0148	1.9403
1110111		(-14.6656, -0.0771)	(5.0903, 6.9394)	(-5.9930, 9.8736)
	ts_{t-1}	1.5804	-3.2960	-2.5080
		(-2.8226, 5.9833)	(-4.0400, -2.5519)	(-9.9800, 4.9641)

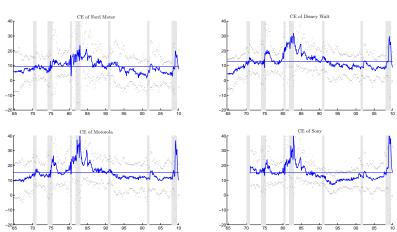
Time variation tests

$\mathcal{H}_{0}^{\mathbf{F}}: Avec[\mathbf{F}'] = 0$	$\mathcal{H}^{ u}_{oldsymbol{0}}:\ A u=0$		
	Stocks (n = 9, 936)	Portfolios $(n = 25)$	
11.8765	389.27	1.5566	
(0.1570)	(0.0000)	(0.9920)	

- Matrix A is a selection matrix for the components of vec[F'] and ν corresponding to the effects of the instruments.
- For individual stocks, we reject time-invariance of risk premia implied by the rejection of \mathcal{H}_0^{ν} .
- The aggregation in the 25 FF portfolios completely masks the time variation of the risk premia.

Paths of estimated cost of equity

Cost of equity:
$$CE_{i,t} = r_{f,t} + b'_{i,t}\lambda_t$$



Test results for asset pricing restriction in the time-invariant model

	$\mathcal{H}_{0}: \ \mathbf{a}\left(\gamma\right) = \mathbf{b}\left(\gamma\right)' \nu$		$\mathcal{H}_{f 0}:\; {f a}\left(\gamma ight)={f 0}$	
	$n^{\chi}=1,400 \ N\left(0,1 ight)$	$n = 25$ χ^2_{n-K}	$n^{\chi}=1,400 \ N\left(0,1 ight)$	$n = 25$ χ_n^2
	Four-factor model			
Test statistic	2.0088	35.2231	19.1803	74.9100
p-value	0.0223	0.0267	0.0000	0.0000
	Fama-French model			
Test statistic	2.9593	83.6846	28.0328	87.3767
p-value	0.0015	0.0000	0.0000	0.0000
	САРМ			
Test statistic	8.2576	110.8368	11.5882	111.6735
p-value	0.0000	0.0267	0.0000	0.0000

Test results for asset pricing restriction in the time-varying model

	$\mathcal{H}_{0}:\ \beta_{1}\left(\gamma\right)=\beta_{3}\left(\gamma\right)\nu$		$\mathcal{H}_{0}:\ eta_{1}\left(\gamma ight)=0$	
	$\mathit{n}^\chi=1,373$	n=25	$n^\chi=1,373$	n = 25
	N (0, 1)	$rac{1}{n}\sum_{m{j}} ext{eig}_{m{j}} \chi_{m{j}}^{m{2}}$	N (0, 1)	$rac{1}{n}\sum_{m{j}} ext{eig}_{m{j}}\chi_{m{j}}^{m{2}}$
	Four-factor model			
Test statistic	3.2514	13.4815	3.8683	14.3080
p-value	0.0000	0.0000	0.0000	0.0000
	Fama-French model			
Test statistic	3.1253	15.7895	3.8136	15.9038
p-value	0.0000	0.0000	0.0000	0.0000
	CAPM			
Test statistic	1.7322	9.2934	1.7381	9.6680
p-value	0.0416	0.2076	0.0411	0.0000

Conclusions

Finance Theory:

 We derive empirically testable no-arbitrage restrictions in a multi-period conditional economy with a continuum of assets and an approximate factor structure.

Econometric Theory:

- Simple two-pass cross-sectional regressions allow us to estimate the time-varying risk premia implied by conditional linear asset pricing models using the returns of individual stocks.
- The risk premia estimator is consistent and asymptotically normal when $n, T \to \infty$.

Empirics:

 We observe a disagreement between the empirical results derived by sorting and pooling stocks into portfolios and by extracting the information directly from the individual stocks.