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Abstract

We construct the large sample distributions of the OLS and GLS R?’s of the second pass
regression of the Fama-MacBeth (1973) two pass procedure when the observed proxy factors are
minorly correlated with the true unobserved factors. The small correlation implies a sizeable
unexplained factor structure in the first pass residuals and, consequently, a sizeable estimation
error in the estimated beta’s which is spanned by the beta’s of the unexplained true factors. The
average portfolio returns and the estimation error of the estimated beta’s are then both linear in
the beta’s of the unobserved true factors which leads to possibly large values of the OLS R? of the
second pass regression. These large values of the OLS R? are not indicative of the strength of the
relationship between the expected portfolio returns and the (macro-) economic factors. We propose
an easy manner for diagnosing it using a statistic that reflects the unexplained factor structure in
the first pass residuals. Similar arguments apply to the second pass t-statistic which are resolved
using the identification robust factor statistics of Kleibergen (2009). Our results put into question
many of the empirical findings that concern the relationship between expected portfolio returns
and (macro-) economic factors. We discuss some prominent ones in passing.
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Keywords: Fama-MacBeth two pass procedure, factor pricing, stochastic discount factors, weak
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1 Introduction

An important part of the asset pricing literature is concerned with the relationship between portfolio
returns and (macro-) economic factors. Support for such an relationship is often established using
the Fama-MacBeth (FM) two pass procedure, see e.g. Fama and MacBeth (1973), Gibbons (1982),
Shanken (1992) and Cochrane (2001). The first pass of the FM two pass procedure estimates the
B’s of the (macro-) economic factors using a linear factor model, see e.g. Lintner (1965) and Fama
and French (1992, 1993, 1996). In the second pass, the average portfolio returns are regressed on the
estimated (’s from the first pass to yield the estimated risk premia, see e.g. Jagannathan and Wang
(1996, 1998), Lettau and Ludvigson (2001), Lustig and Van Niewerburgh (2005), Li et. al. (2006),
Santos and Veronesi (2006) and Yogo (2006). The ordinary and generalized least squares R?’s of the
second pass regression alongside the ¢-statistics of the risk premia are used to gauge the strength of
the relationship between the expected portfolio returns and the involved factors.
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Recently, the appropriateness of these measures has been put into question when the 3’s are small.
An early critique is Kan and Zhang (1999) who show that the second pass t-statistic increases with
the sample size when the true 8’s are zero and the expected portfolio returns are non-zero, so there
is no factor pricing. Kleibergen (2009) shows that the second pass t-statistic also behaves in a non-
standard manner when the (’s are non-zero but small and factor pricing is present so the expected
portfolio returns are proportional to the (small) 5’s. To remedy these testing problems, Kleibergen
(2009) proposes identification robust factor statistics that remain trustworthy even when the £’s of
the observed factors are small or zero.

Burnside (2011) does not focus on properties of second pass statistics, like R?’s and t-statistics,
but argues that 8’s of observed factors which are close to zero, or which cannot be rejected to be equal
to zero, invalidate a relationship between expected portfolio returns and involved factors. Daniel
and Titman (2012) do not focus on the behavior of second pass statistics either but argue that the
relationship between expected portfolio returns and involved factors depends on the manner in which
the portfolios are constructed. When portfolios are not based on sorting with respect to book-to-
market ratios and size, a relationship between expected portfolios returns and observed factors is
often absent.

Lewellen et. al. (2010) criticize the use of the ordinary least squares (OLS) R? of the second pass
regression. They show that it can be large despite that the ’s of the observed factors are small or
even zero and propose a few remedies. Lewellen et. al. (2010) do not provide a closed form expression
of the large sample distribution of the OLS R? so it remains unclear why the OLS R? can be large
despite that the B’s of the observed factors are small or zero. The same argument applies to one of
their remedies which is the generalized least squares (GLS) R%. We therefore construct the expressions
of the large sample distributions of both the OLS and GLS R?’s when the 3’s of the observed factors
are small and possibly zero.

We derive the large sample distributions of the OLS and GLS R?’s starting out from factor pricing
based on a small number of true possibly unknown factors. These factors imply an unobserved factor
structure for the portfolio returns. The observed proxy factors used in the FM two pass procedure
are the proxies for these unobserved true factors. When they are only minorly correlated with the
true factors, a sizeable unexplained factor structure remains in the first pass residuals. Consequently
also a sizeable estimation error in the estimated (’s exists which is, as we show, to a large extent
spanned by the (’s of the unexplained factors. The expected portfolio returns are linear in the 3’s of
the unobserved factors so both the average portfolio returns and the estimation error of the estimated
B’s are to a large extent linear in the (’s of the unobserved true factors when the observed proxy
and unobserved true factors are only minorly correlated. As further shown by the expression of the
large sample distribution of the OLS R2, this produces the large values of the OLS R? of the second
pass regression when we regress the average portfolio returns on the estimated §’s from the first pass
regression and the observed proxy and unobserved true factors are only minorly correlated.

When the observed factors provide an accurate proxy of the unobserved true factors, the estimated
B’s from the first pass regression are spanned by the §’s of the true factors. Since both the average
portfolio returns and the estimated (3’s are basically linear in the ’s of the unobserved true factors, the
OLS R? is large, see Lewellen et. al. (2010). Hence, both when the observed proxy factors are strongly
or minorly correlated with the unobserved true factors, the OLS R? can be large. In the latter case,
the large value, however, results from the estimation error in the estimated 8’s. An easy diagnostic for
how a large value of the OLS R? should be interpreted therefore results from the unexplained factor
structure in the first pass residuals. When this unexplained factor structure is considerable, a large
value of the OLS R? is caused by it so the large value of the OLS R? is not indicative of the strength
of the relationship between the expected portfolio returns and the (macro-) economic factors.



The expression of the large sample distribution of the GLS R? shows that it is small when the
observed proxy factors are only minorly correlated with the unobserved true factors. It also shows,
however, that the GLS R? is rather small in general so a small value of the GLS R? can result when
the observed factors are strongly or minorly correlated with the unobserved true factors. This makes
it difficult to gauge the strength of the relationship between the expected portfolio returns and the
(macro-) economic factors using the GLS R2.

To construct the expressions of the large sample distributions of the OLS and GLS R?’s which are
representative for observed proxy factors that are minorly correlated with the unobserved true factors,
we assume that the parameters in an (infeasible) linear regression of the true unknown factors on
the observed proxy factors are decreasing/drifting with the sample size. Our assumption implies that
statistics that test the significance of the observed proxy factors for explaining portfolio returns and the
unobserved true factors do not increase with the sample size but stay constant/small when the sample
size increases. This is in line with the values of these statistics that we typically observe in practice.
Under the traditional assumption of strong correlation between the observed proxy and unobserved
true factors, these statistics should all be large and proportional to the sample size. Since this is then
clearly not the case, the traditional assumption is out of line and provides an inappropriate base for
statistical inference in such instances. Our assumption also implies that the estimated risk premia
in the second pass regression converge to random variables so they cannot be used in a bootstrap
procedure since such a procedure relies upon consistent estimators. The drifting assumption on the
regression parameters provides inference which is closely related to so-called finite sample inference but
it does not require the disturbances to be normally distributed, see e.g. MacKinlay (1987) and Gibbons
et. al. (1989). It is also akin to the weak instrument assumption made for the linear instrumental
variables regression model in econometrics, see e.g. Staiger and Stock (1997).

The paper is organized as follows. Following e.g. Merton (1973), Ross (1976), Roll and Ross
(1980), Chamberlain and Rothschild (1983) and Connor and Korajczyk (1988, 1989), we first in the
second section lay out the factor structure in portfolio returns. We then propose a measure for the
unexplained factor structure in the first pass residuals of the FM two pass procedure. We use it to show
that many of the (macro-) economic factors that are commonly used, like, for example, consumption
and labor income growth, housing collateral, consumption-wealth ratio, labor income-consumption
ratio, interactions of either one of the latter three with other factors, leave a strong unexplained factor
structure in the first pass residuals. In the third section, we discuss the effects of the unexplained factor
structure on the OLS and GLS R? by constructing expressions of their large sample distributions. We
show that the unexplained factor structure is likely to have explained the large OLS R? documented
in many empirical studies, like, Jagannathan and Wang (1996, 1998), Lettau and Ludvigson (2001),
Lustig and Van Niewerburgh (2005), Li et. al. (2006), Santos and Veronesi (2006) and Yogo (2006).
The large OLS R? in these studies are then not indicative of the strength of the relationship between
expected portfolio returns and the involved (macro-) economic factors. The third section also briefly
discusses the FM t-statistic and the identification robust factor statistics. The fourth section concludes.

2 Factor Model for Portfolio Returns

Portfolio returns exhibiting an (unobserved) factor structure with k factors result from a statistical
model that is characterized by, see e.g. Merton (1973), Ross (1976), Roll and Ross (1980), Chamberlain
and Rothschild (1983) and Connor and Korajczyk (1988, 1989):

Tlt:MRz+/6$1flt++/81kfkt+glt7 Zzl,,N,tzl,,T, (1)



with r;; the return on the i-th portfolio in period ¢; 1 g; the mean return on the i-th portfolio; fj; the
realization of the j-th factor in period ¢; 3;; the factor loading of the j-th factor for the i-th portfolio,
g;¢ the idiosyncratic disturbance for the ¢-th portfolio return in the ¢-th period and N and T the
number of portfolios and time periods. We can reflect the factor model in (1) as well using vector
notation:

Ry = pp + BF; + ¢4, (2)

with Rt = (Tlt . T‘Nt)/, HRr = (MRl . MRN),7 Ft = (flt . fk:t),a Et = (511‘, .. -ENt)/ and

B - Buk
g=1 = -~ | (3)

Byt -+ Bk
The vector notation of the factor model in (2) shows that, if the factors Fy, t = 1,...,T, are i.i.d. with
finite variance and are uncorrelated with the disturbances ¢, t = 1,...,T, which are i.i.d. with finite

variance as well, the covariance matrix of the portfolio returns reads

Virr = BVrrB' + Ve, (4)

with Vgrg, Vrr and V.. the N X N, k x k and N x N dimensional covariance matrices of the portfolio
returns, factors and disturbances respectively.

The factors affect many different portfolios simultaneously which allows us to identify the number
of factors using principal components analysis, see e.g. Anderson (1984, Chap 11). When we construct
the spectral decomposition of the covariance matrix of the portfolio returns,

Ver = PAP/, (5)

with P = (py...pn) the N x N orthonormal matrix of principal components or characteristic vectors
(eigenvectors) and A the N x N diagonal matrix of characteristic roots (eigenvalues) which are in
descending order on the main diagonal, the number of factors can be estimated as the number of
characteristic roots that are distinctly larger than the other characteristic roots. The literature on
selecting the number of factors is vast and contains further refinements of this factor selection procedure
and settings with fixed and increasing number of portfolios. We do not contribute to this literature
but just use some elements of it to shed light on the effect of the unexplained factor structure on
statistics used in the FM two pass procedure.

2.1 Factor Structure in Observed Portfolio Returns

We use three different data sets to show that the effects of the unexplained factor structure on the FM
two pass procedure are highly relevant. The first data set is the one used by Lettau and Ludvigson
(2001). The portfolio returns used by Lettau and Ludvigson (2001) consist of quarterly observations
from the third quarter of 1963 to the third quarter of 1998 of the return on twenty-five size and book-
to-market sorted portfolios so N = 25 and T" = 141. The second data set results from Jagannathan
and Wang (1996) and their portfolio return series consist of the monthly returns on one hundred
size and beta sorted portfolios. Their return series begin in July 1963 and end in December 1990 so
T = 330 and N = 100. The third data set consists of quarterly returns on twenty-five size and book
to market sorted portfolio’s and is obtained from Ken French’s website. The return series are from
the first quarter of 1952 to the fourth quarter of 2001 so 7' = 200 and N = 25.



LLO1 | JW96 | F52-01
1 2720 3116 2434
2 113.8 | 180.2 | 140.5
3 98.60 | 80.6 108.9
4 18.36 28.5 26.7
5 17.61 254 19.9
6 13.48 16.2 14.0
7 12.11 14.8 11.6
8 9.31 14.0 10.9
9 8.42 12.6 9.92
10 7.25 12.1 8.18
11 6.02 12.1 7.19
12 5.40 11.4 6.32
13 4.90 11.3 6.17
14 4.38 11.1 5.63
15 4.26 10.8 5.21
16 3.93 10.3 5.02
17 3.50 10.2 4.40
18 3.39 9.9 3.83
19 3.02 9.6 3.43
20 2.71 9.5 2.90
21 2.50 9.2 2.79
22 2.18 9.0 2.75
23 1.74 8.9 2.47
24 1.46 8.7 2.12
25 0.93 8.4 1.77
FACCHECK | 95.5% | 86% | 94.3%

Table 1: Largest twenty five characteristic roots (in descending order) of the covariance matrix of the portfolio
returns (LLO1 stands for Lettau and Ludvigson (2001), JW96 stands for Jagannathan and Wang (1996) and
F52-01 stands for the portfolio returns from Ken French’s website during 1952-2001). FACCHECK equals the
percentage of the variation explained by the three largest principal components.



Table 1 lists the (largest) twenty-five characteristic roots' of the three different sets of portfolio
returns. It is clear from these characteristic roots that there is a rapid decline of the value of the roots
from the largest to the third largest one and a much more gradual decline from the fourth largest one
onwards. This indicates that the number of factors is (most likely) equal to three.

We use the fraction of the total variation of the portfolio returns that is explained by the three
largest principal components as a check for the presence of a factor structure. We measure the total
variation by the sum of all characteristic roots.? The factor structure check then reads

AL+ A2+ A3

FACCHECK — ,
M+ AN

(6)
with A1 > Ao > ... > Ay the characteristic roots in descending order. Table 1 shows that the factor
structure check equals 95.5% for the Lettau-Ludvigson (LLO01) data, 86% for the Jagannathan and
Wang (JW96) data and 94.3% for the French (F52-01) data. Using the statistic proposed in, for
example, Anderson (1984, Section 11.7.2), it can be shown that the hypothesis that the three largest
principal components explain less than 80% of the variation of the portfolio returns is rejected with
more than 95% significance for each of these three data sets.

Similar to the three data sets above, we also find evidence for a factor structure in several other
commonly used data sets of financial assets. For example, one set is the conventional twenty-five size
and book-to-market sorted portfolios augmented by thirty industry portfolios, as in Lewellen et. al.
(2010), and another is the individual stock return data from the Center for Research in Security Prices
(CRSP). We focus on the three data sets mentioned before and omit the other data sets for brevity
since our results and findings extend to these data sets as well.

2.2 Factor Models with Observed Proxy Factors

Table 1 shows that there is compelling evidence for a factor structure in portfolio returns, see also
Connor and Koraczyk (1988). Alongside describing portfolio returns using “unobserved factors”, as
briefly discussed previously, a large literature exists which explains portfolio returns using observed
factors which are proxies for the unobserved ones. The observed proxy factors that are used in this
literature consist both of asset return based factors and (macro-) economic factors. The observed
factor model is identical to the factor model in (2) but with a value of F; that is observed and a known
value of the number of factors, say m :

Ry = p+ BG + Uy, (7)

with Gt = (g1t-.-gme)’ the m-dimensional vector of observed proxy factors, Uy = (uys...upnt) a
N-dimensional vector with disturbances, p a m-dimensional vector of constants and B the N x m
dimensional matrix that contains the 5’s of the portfolio returns with the observed proxy factors. In
the sequel we discuss the observed proxy factors used in seven different articles: Fama and French
(1993), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Li et. al. (2006), Lustig and
van Nieuwerburgh (2005), Santos and Veronesi (2006) and Yogo (2006).

Fama and French (1993) show that the variation in portfolio returns can be explained using a
factor model with three observed asset return based factors: the return on a value weighted portfolio,
a “small minus big” (SMB) factor which consists of the difference in returns on a portfolio consisting

'The data set from Jagannathan and Wang (1996) consists of one hundred portfolio returns so Table 1, for reasons
of brevity, only shows the largest twenty-five characteristic roots.
2This corresponds with using the trace norm of the covariance matrix as a measure of the total variation.



of assets with a small market capitalization minus the return on a portfolio consisting of assets with
a large market capitalization and a “high minus low” (HML) factor which consists of the difference
in the returns on a portfolio consisting of assets with a high book to market ratio minus the return
on a portfolio consisting of assets with a low book to market ratio. We use the portfolio returns of
the twenty-five size and book to market sorted portfolio’s from Ken French’s website to estimate the
observed factor model.

Table 2 shows the characteristic roots of the covariance matrix of the portfolio returns and of the
covariance matrix of the residuals that result from the observed factor model with the three Fama-
French (FF) factors. Table 2 shows that the three largest characteristic roots of the covariance matrix
have decreased substantially after incorporating the three FF factors. The factor structure check
shows that the factors associated with the three largest principal components of the residuals explain
47.5% of their total variation while the factors associated with the three largest principal components
of the covariance matrix of the portfolio returns explain 94.3% of their total variation. It shows that
the three FF factors eradicate the factors associated with the three largest principal components of
the portfolio returns. After incorporating the FF factors, there is no unexplained factor structure left
over in the residuals since the characteristic roots of their covariance matrix decline gradually and
do not have a specific cutoff after which the decline of the characteristic roots becomes much more
gradual.

The characteristic roots of the covariance matrices can be used to test the significance of the
parameters associated with the observed proxy factors. The likelihood ratio (LR) statistic for testing
the null hypothesis that the parameters associated with the observed factors are all equal to zero,
Hp : B = 0, against the alternative hypothesis that they are unequal to zero, H; : B # 0, can be
specified as

LR = T [log(| Veore

) — IOg(’VRes

)] = T Hog(Aipore) — Tog(Aires)], (8)

with Vpore and Vies estimators of the covariance matrix of the portfolio returns and the residual
covariance matrix that results after regressing the portfolio returns on the observed factors G, and

Aiport, © = 1,..., N, the characteristic roots of the covariance matrix of the portfolio returns, met,
and \;yes; © = 1,..., N, the characteristic roots of the covariance matrix of the residuals of the observed

factor model, Vres.® Under Hy, the LR statistic in (8) has a x2(3N) distribution in large samples.
The value of the LR statistic using the FF factors stated in Table 2 equals 2064 which is strongly
significant since its p-value is 0.000 which is in line with our finding that the FF factors eradicate
the factors associated with the largest principal components of the covariance matrix of the portfolio
returns.?

Alongside the LR statistic that tests the significance of all the parameters associated with the FF
factors, Table 2 also lists three more statistics: another LR statistic, an F-statistic and a goodness of
fit measure to which we refer as the pseudo-R2.

The other LR statistic in Table 2 tests the significance of the parameters associated only with
the SMB and HML factors. The expression for this LR statistic is identical to that in (8) when we
replace the characteristic roots of the covariance matrix of the raw portfolio returns, A; ort, with the

3The expression of the LR statistic in the first part of (8) is standard, see e.g. Campbell, Lo and MacKinlay (1997,
Eq (5.3.28)) in which there is a typo since the Likelihood Ratio statistic equals twice the difference between the log
likelihoods of the restricted and unrestricted models. Upon conducting spectral decompositions of Vport and VRQS, as in
(5), the final expression in (8) results.

Instead of using the LR statistic, we could also use a Wald statistic to test for the significance of the factors. Under
homoscedastic independent normal errors, the Wald statistic has an exact F-distribution, see MacKinlay (1987) and
Gibbons et. al. (1989). We use the LR statistic, for whose distribution we have to rely on a large sample argument, since
it is directly connected to the characteristic roots.



F52-01 JW96
raw FF factors | raw | FF factors | R, | JW96 factors
1 2434 54.94 3116 70.5 600.6 594.0
2 140.5 38.87 180.2 50.0 81.24 78.9
3 108.9 22.77 80.6 38.6 48.4 48.0
4 26.7 18.24 28.5 27.3 28.5 28.0
5 19.9 12.47 25.4 16.0 17.1 17.0
6 14.0 10.8 16.2 14.7 14.8 14.8
7 11.6 9.17 14.8 13.9 14.4 14.3
8 10.9 8.61 14.0 13.5 13.7 13.6
9 9.92 7.84 12.6 12.2 12.2 12.2
10 8.18 6.55 12.1 11.7 12.1 12.0
11 7.19 6.43 12.1 11.6 11.8 11.7
12 6.32 5.77 114 11.3 11.3 11.2
13 6.17 5.16 11.3 10.7 11.1 11.1
14 5.63 5.09 11.1 10.6 10.8 10.8
15 5.21 4.64 10.8 10.4 10.5 10.5
16 5.02 4.31 10.3 10.3 10.3 10.3
17 4.40 3.88 10.2 9.81 10.2 9.94
18 3.83 3.47 9.9 9.58 9.80 9.71
19 3.43 2.95 9.6 9.38 9.54 9.51
20 2.90 2.83 9.5 9.03 9.18 9.17
21 2.79 2.74 9.2 8.90 9.11 9.11
22 2.75 2.51 9.0 8.88 8.91 8.85
23 2.47 2.19 8.9 8.64 8.70 8.51
24 2.12 1.76 8.7 8.39 8.47 8.44
25 1.77 1.64 8.4 8.15 8.36 8.30
FACCHECK 94.3% 47.5% 86% 23% 57% 57%
LR against raw 2064 2994 1586 1845
0.000 0.000 0.000 0.000
LR against R, 1285 1408 259
0.000 0.000 0.004
F-stat prin. comp. 13777 26321 8777 8826
0.000 0.000 0.000 0.000
F-stat prin. comp. R, %gi%
F-stat HML-SMB g).457}5
pseudo-R? 0.915 0.823 0.681 0.684
pseudo-R? prin. comp 0.96 0.791 0.794
pseudo-R? FF 1 0.627 0.63

Table 2: The largest twenty five characteristic roots (in descending order) of the

largest principal components.

covariance matrix of the
portfolio returns and residuals that result using FF factors (French’s website data 1952-2001) and those that
result from using the Jagannathan and Wang (1996) data with different observed factors. The likelihood ratio
(LR) statistic tests against the indicated specification (p-value is listed below). The F-statistics at the bottom
of the table result from testing the significance of the indicated factors in a regression of either the three
largest principal components, the FF factors or only the HML-SMB factors on them. The pseudo-R2 of these
regressions are listed further down. FACCHECK equals the percentage of the variation explained by the three




characteristic roots of the covariance matrix of the residuals of an observed factor model that has the
value weighted return as the only factor. This LR statistic is equal to 1285 which is highly significant
when compared with its 95% critical value that results from a x?(2N) distribution so the parameters
of the SMB and HML factors are significant.

The F-statistic reported in Table 2 is the F-statistic (times number of tested parameters) that
tests the significance of the FF factors in a regression of the three factors that result from the three
largest principal components of the portfolio returns on the FF Factors.” The F-statistic therefore
results from testing Hp : § = 0 in the linear model:

F,= pup+0G+ V4, (9)

with F; a 3 x 1 vector that results from the three largest principal components and G; a 3 x 1 vector
containing the FF factors. The number of elements of § equals nine. Table 2 shows that the F-statistic
is huge which further reflects the close connection between the largest principal components and the
FF factors which is also revealed by the LR statistics and the factor structure checks, see also Bai and
Ng (2006).

The pseudo-R? reported in Table 2 is a goodness of fit measure that reflects the percentage of the
total variation of the portfolio returns that is explained by the observed proxy factors. We measure
the total variation of the portfolio returns by the sum of the characteristic roots of its covariance
matrix and similarly for the total variation of the portfolio returns explained by the observed proxy
factors. Since the latter equals the total variation of the portfolio returns minus the total variation of
the residuals of the regression of the portfolio returns on the observed factors proxy, the pseudo-R?
reads® e

pseudo-R? =1 — ﬁ (10)
The pseudo-R? in Table 2 shows that the FF factors explain 91.5% of the total variation of the portfolio
returns.

Jagannathan and Wang (1996) propose a conditional version of the capital asset pricing model
which they estimate using three observed factors: the return on a value weighted portfolio, a corporate
bond yield spread and a measure of per capita labor income growth. Table 2 contains the largest
twenty-five characteristic roots of the covariance matrices that result for the Jagannathan and Wang
(1996) data set. Besides the characteristic roots of the covariance matrix of the raw portfolio returns,
Table 2 contains the characteristic roots of the covariance matrix of the residuals of three observed
factor models. The first one of these uses the three FF factors (for which we use the SMB and HML
factors from Ken French’s website), the second one has the value weighted return, R, as the only
factor while the third specification uses all three factors from Jagannathan and Wang (1996).

The characteristic roots associated with the Jagannathan and Wang (1996) data show that the
FF factors remove the factor structure in the portfolio returns since the characteristic roots of the
covariance matrix of the residuals decline gradually so there are no roots that are distinctly larger
than all the others. This is further reflected by the value of the factor structure check of 23% and the
pseudo-R? of 82.3%. The LR statistics indicate that the parameters of all the FF factors are strongly
significant in the regression of the portfolio returns on the FF factors. The F-statistic shows that the

5Since the dependent variable is estimated, we should correct the covariance matrix involved in the F-statistic but
we did not do so since it would not alter the overall conclusion that the F-statistic is highly significant.
5The pseudo-R? equals the total variation of the explained sum of squares over the total variation of the portfolio

trace(V, | A ~) trace(V, 5 ~) N N,
returns so pseudo-R? = pEBGS — ] — Bop-BG) _q _ Zyzitires
trace(VR) Z¢:1 Ai,port

trace(Vg)
spectral decomposition of Vg and Vi, 54, see (5), and we used that Ve =V, o + Vi, pe-

, where the last result is obtained using the



same holds for the regression of the three largest principal components on the FF factors. All these
findings are identical to those previously discussed for the quarterly portfolio returns.

If the value weighted return is the only factor in the observed factor model, Table 2 shows that there
remains a considerable factor structure in the residuals since the characteristic roots of the covariance
matrix of the residuals show that there are (probably) still two unexplained factors present. This is
further revealed by the factor structure check of 57% which indicates a factor structure in the residuals.
Interestingly the pseudo-R? is 68.1% which means that the value weighted return is amongst the FF
factors the most important explanator of the portfolio returns which also explains the highly significant
values of the LR and F-statistics.

When we add the yield spread and labor income factors to the factor model with only the value
weighted return, Table 2 shows that the characteristic roots of the covariance matrix of the residuals
hardly change. The factor structure check therefore remains equal to 57% and the pseudo-R? still
equals 68.4%. This indicates that the yield spread and labor income factors do not capture the
two unexplained factors present in the residuals that result from the factor model with only the
value weighted return. This is further reflected by the LR statistic that tests the significance of the
parameters associated with the yield spread and labor income factors. This LR statistic is equal to
259 and results from an expression identical to (8) but using the characteristic roots of the residual
covariance matrices that result from factor models with only the value weighted return and all three
factors used by Jagannathan and Wang (1996) for which the largest twenty-five are stated in the
sixth and seventh columns of Table 2. Although this LR statistic is significant compared with its 95%
critical value from a x2(2N = 200) distribution, its p-value is only 0.004. This indicates that the
parameters associated with the yield spread and labor income factors are all rather close to zero.

The small explanatory power of the yield spread and labor income growth is further reflected by
the F-statistics that result from regressing the three largest principal components or the SMB and
HML factors on the value weighted return, yield spread and labor income growth. The F-statistics
labeled "F-stat prin. comp. R,," and "F-stat HML-SMB" test the significance of the yield spread
and labor income factors in regressions of respectively the three largest principal components ("F-stat
prin. comp. Ry,") and the HMB and SMB factors ("F-stat FF factors no R,,,") on the value weighted
return, yield spread and labor income growth. The first of these F-statistics equals 16.8 which equals
the 99% critical value of the x?(6) distribution while the latter equals 3.51 which is below the 95%
critical value of the x2(4) distribution (9.49). It shows that we cannot reject the hypothesis that the
yield spread and labor income growth have no explanatory power for the HML and SMB factors at
the 95% significance level.

Lettau and Ludvigson (2001) wuse a number of specifications of an observed factor model to
estimate different conditional asset pricing models. The observed proxy factors that they consider
are the value weighted return (R, ), the consumption-wealth ratio (cay), consumption growth (Ac),
labor income growth (Ay), the FF factors and interactions between the consumption-wealth ratio and
consumption growth (cayAc), the value weighted return (cayR,.,) and labor income growth (cayAy).
The characteristic roots of the covariance matrix of the residuals that result from six different observed
factor models estimated in Lettau and Ludvigson (2001) are stated in Table 3.

The characteristic roots in Table 3 show that for all specifications of the observed factor model,
except the one using the FF factors, the residuals still contain a factor structure. This is reflected
by the factor structure check which is above 82% for all these specifications. For the observed factor
models that do not contain the value weighted return as one of the factors, the factor structure check
is close to the one which results for the portfolio returns itself. Hence, there are still three unexplained
factors present in the residuals of these factor models while there are two unexplained factors present
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LLO1
raw Ryw Ac FF factors | cay, Ryw, | cay, Ac, | cay, Ryw, Ay,
cay Ry, cayAc | cayRy, cayAy

1 2720 435 2676 26.5 433 2414 412

2 114 99.5 111 22.3 98.0 105 97.2

3 98.6 26.2 98.6 14.3 26.0 96.0 25.6

4 18.4 18.36 18.1 13.9 17.9 17.9 17.8

5 17.6 13.8 16.8 11.2 12.9 16.7 12.8

6 13.5 12.2 13.5 8.91 12.1 13.0 11.8

7 12.1 9.33 12.0 8.0 9.20 11.9 9.19

8 9.31 8.51 9.28 7.03 8.31 9.24 8.18

9 8.42 7.26 8.37 6.27 7.06 8.24 6.91

10 7.25 6.03 7.12 5.17 5.75 7.09 5.65

11 6.02 5.53 6.01 4.65 5.02 5.61 4.95

12 5.4 4.91 5.34 4.40 4.88 5.27 4.87

13 4.9 4.38 4.86 4.25 4.36 4.86 4.25

14 4.38 4.26 4.38 3.73 3.99 4.34 3.93

15 4.26 3.97 4.18 3.61 3.85 3.89 3.85

16 3.93 3.54 3.93 3.34 3.40 3.85 3.40

17 3.5 3.39 3.44 3.06 3.38 3.35 3.32

18 3.39 3.03 3.30 2.91 2.99 3.12 2.92

19 3.02 2.77 3.01 2.52 2.77 2.98 2.73

20 2.71 2.51 2.69 2.29 2.49 2.68 2.48

21 2.5 2.33 2.46 2.07 2.30 2.42 2.29

22 2.18 1.99 2.17 1.54 1.99 2.16 1.97

23 1.74 1.47 1.73 1.44 1.42 1.71 1.41

24 1.46 1.44 1.46 0.95 1.33 1.38 1.30

25 0.93 0.92 0.92 0.68 0.90 0.91 0.90
FACCHECK 95.5% | 82.1% | 95.5% 38.2% 82.5% 95.2% 82.1%
LR against raw 765 36.4 1940 856.4 128.2 902.5
0.000 0.064 0.000 0.000 0.001 0.000

LR against Ry, 1175 91.4 138.5
0.000 0.000 0.007

LR against Ac 91.8
IR - 0.000
against cay,

Ryw, cayRyw (1)1(23%
F-stat prin. comp 7965 6.26 32853 6926 32.01 7820
0.000 0.100 0.000 0.000 0.000 0.000

F-stat prin. comp. Ry, 12515 4.10 18.1 13.72
0.000 0.663 0.006 0.319

F-stat FF factors 80.1 3.73 81.8 28.9 90.3
0.000 0.292 0.000 0.001 0.000

F-stat HML-SMB 1.91 10.7
0.928 0.381

pseudo-RR? 0.78 | 0.016 0.95 0.78 0.10 0.79
pseudo-R? prin. comp 0.814 | 0.016 0.99 0.815 0.10 0.822
pseudo-R? FF 0.63 0.01 1 0.63 0.094 0.64

Table 3: The twenty five characteristic roots (in descending order) of the covariance matrix of the portfolio
returns and residuals that result using different specifications from Lettau and Ludvigson (2001). The likelihood
ratio (LR) statistic tests against the indicated specification (p-value is listed below). The F-statistics at the
bottom of the table result from testing the significance of the indicated factors in a regression of either the
three largest principal components, the FF factors or the HML-SMB factors on them. The pseudo-R? of these
regressions are listed further down. FACCHECK equals the percentage of the variation explained by the three
largest principal components.
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in the residuals of the factor models that include the value weighted return (except for the specification
that includes all three FF factors).

The likelihood ratio statistics reported in Table 3 test the significance of the parameters associated
with the observed factors. They result from a specification identical to the one in (8) when the
characteristic roots are chosen from the appropriate columns in Table 3. The degrees of freedom
of their x? large sample distribution equals the number of tested parameters. The likelihood ratio
statistics show that only the parameters of the FF factors and the value weighted return are strongly
significant. For all the other specifications, the likelihood ratio statistic are always less than twice the
number of estimated parameters. This indicates that although the LR statistic might be significant
at the 95% significance level, which is not even the case for the consumption growth, the values of the
parameters associated with the observed factors are all close to zero.

The F-statistics in Table 3 show that the value weighted return and the HML and SMB factors
are the only factors that have strong explanatory power for the three largest principal components.
For all other factors, the F-statistics testing their significance are either not significant or just barely
so. This is in contrast to the huge F-statistics that result for the value weighted return and the HML
and SMB factors. As expected, because of the strong correlation between the three largest principal
components and the FF factors, the F-statistics that result from regressions of the FF factors on the
factors are similar to those that result from regressing the three largest principal components on them.

Li, Vassalou and Xing (2006) use the investment growth rate in the household sector (HHOLD),
nonfinancial corporate firms (NFINCO) and financial companies (FINAN) as factors in an observed
factor model. We estimate this observed factor model using the previously discussed quarterly portfolio
returns from French’s website.

Table 4 contains the estimation results for the observed factor model from Li et. al. (2006). It
contains two specifications of the observed factor model, one which uses all three factors and one which
only uses the FINAN factor. For both specifications, the characteristic roots of the covariance matrix
of the residuals are comparable to those of the covariance matrix of the raw portfolio returns. Hence,
both specifications do not capture the factor structure of the portfolio returns. This is further reflected
by the factor structure check which equals 94.3% for both specifications and coincides with that of the
raw portfolio returns. The LR statistics reported in Table 4 therefore show that the parameters of the
FINAN factors are not significant at the 95% significance level while the parameters of the HHOLD
and NFINCO factors are only significant at the 99% significance level. Hence, the parameters of all
three factors are close to zero. The F-statistics that result from regressing the three largest principal
components on these factor further confirm this since they are borderline significant (FINAN) or not
(all three factors) when we test at the 95% significance level.

Lustig and Van Nieuwerburgh (2005) employ an observed factor model that contains non-
durable consumption growth (Acpondur), a housing collateral ratio (myfa) and the interaction between
nondurable consumption growth and the housing collateral ratio (Ac,ondur Xmyfa). We estimate this
model using the quarterly portfolio returns from French’s website. The results are reported in Table
4.

Table 4 contains two specifications of the factor model used by Lustig and Van Nieuwerburgh
(2005). Ome of these specifications uses all three factors while the other one has nondurable consump-
tion growth as the only factor (Acpondur column). The characteristic roots in Table 4 show that both
specifications do not capture the factor structure of portfolio returns since Table 4 shows that the
residuals of both of these two models still contain three unexplained factors. This is further reflected
by the factor structure check which equals 93.9% for the specification with nondurable consumption
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F52-01
raw Ryw | Achondurabie | FINAN | LVX06 | LNO5 | SV06 Y06
1 2434 | 465.2 2250 2422 2404 2204 | 439.7 | 465.1
2 140.5 | 140.3 139.5 138.9 137.7 137.0 | 122.7 | 139.1
3 108.9 36.7 108.8 105.9 103.9 108.0 36.3 36.1
4 26.7 21.6 26.6 26.6 25.1 26.5 21.5 21.6
5 19.9 16.8 19.9 19.5 19.2 19.7 16.3 16.1
6 14.0 12.3 13.9 13.9 13.8 13.8 12.2 11.9
7 11.6 10.9 11.1 11.6 11.3 11.1 10.9 10.8
8 10.9 9.98 10.8 10.8 10.8 10.8 9.90 9.86
9 9.92 8.24 9.89 9.71 9.70 9.76 8.01 8.19
10 8.18 7.22 8.13 8.14 8.12 8.12 6.91 7.22
11 7.19 6.50 7.19 7.16 7.00 7.16 6.33 6.47
12 6.32 6.19 6.24 6.31 6.31 6.23 6.16 6.15
13 6.17 5.70 6.17 6.17 6.16 6.09 5.64 5.66
14 5.63 5.59 5.61 5.62 5.59 5.55 5.57 5.56
15 5.21 5.03 5.20 5.20 5.19 5.19 4.98 5.01
16 5.02 4.62 5.02 5.02 5.00 4.99 4.57 4.51
17 4.40 4.31 4.39 4.29 4.25 4.37 4.31 4.21
18 3.83 3.62 3.81 3.82 3.77 3.79 3.48 3.53
19 3.43 3.43 3.42 3.40 3.32 3.38 3.37 3.41
20 2.90 2.89 3.88 2.84 2.77 2.84 2.87 2.88
21 2.79 2.79 2.78 2.77 2.74 2.75 2.69 2.77
22 2.75 2.71 2.73 2.73 2.68 2.53 2.60 2.67
23 2.47 2.39 2.46 2.47 2.43 2.45 2.27 2.40
24 2.12 2.12 2.10 2.10 2.00 2.09 2.10 2.10
25 1.77 1.62 1.76 1.73 1.72 1.74 1.61 1.62
FACCHECK 94.3% | 81.4% 93.9% 94.3% 94.3% | 93.8% | 80.5% | 81.5%
LR against raw 854 41.9 35.2 111 93.5 972 904
0.000 0.019 0.085 0.004 0.07 0.000 0.00
LR against FINAN 705(5%7
LR against Acnondurable 501416 08(?030
LR against R, 118 50.4
0.000 0.46
F-stat prin. comp 4976 17.8 9.2 16.2 27.5 5135 5065
0.000 0.000 0.027 0.064 0.001 0.000 0.000
F-stat prin. comp. Ry, g%b%
F-stat FF factors — 22.4 6.9 11.5 31.2 — —
0.000 0.074 0.240 0.000
pseudo-R? 0.723 0.065 0.007 0.015 0.083 | 0.739 | 0.724
pseudo-R? prin. comp 0.584 0.05 0.008 0.017 0.065 | 0.609 | 0.587
pseudo-R? FF 0.321 0.028 0.015 0.026 0.043 | 0.374 | 0.326

Table 4: The twenty five characteristic roots (in descending order) of the covariance matrix of the portfolio
returns and residuals that result using different specifications from Li et. al. (2006) (LVXO06), Lustig and
Van Nieuwerburgh (2005) (LNO05), Santos and Veronesi (2006) (SV06) and Yogo (2006) (Y06). All use the
quarterly portfolio returns from French’s website. The likelihood ratio (LR) statistic tests against the indicated
The F-statistics at the bottom of the table result from testing the
significance of the indicated factors in a regression of either the three largest principal components or the FF
factors on them. The pseudo-R? of these regressions are listed further down. FACCHECK equals the percentage

specification (p-value is listed below).

of the variation explained by the three largest principal components.
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growth as the only factor and 93.8% for the specification that uses all three factors. The likelihood
ratio statistics that test the significance of the parameters of the consumption growth and the joint
significance of the housing collateral and the interaction factor are only significant at the 98% and
59% significance level while the F-statistic that results from regressing the three largest principal com-
ponents on all three factors is significant at the 94% level. This all shows that the empirical support
for the factors proposed by Lustig and Van Nieuwerburgh (2005) is rather minor.

Santos and Veronesi (2006) use adaptations of the factors from Lettau and Ludvigson (2001).
Alongside the value weighted returns, Santos and Veronesi (2006) use both the consumption-wealth
ratio (cay), previously used by Lettau and Ludvigson (2001), and a labor income to consumption ratio
(sw) interacted with the value weighted return as factors. We estimate their specification using the
portfolio returns from French’s website.

Table 4 contains the estimation results for two specifications of the observed factor model used by
Santos and Veronesi (2006). The first specification has the value weighted return as the only factor
while the other specification uses all three factors. The characteristic roots of the covariance matrix
of the residuals that result for the first specification show that the value weighted return removes one
factor so the residuals contain two unexplained factors. Table 4 shows that if we consider all three
observed factors, the residuals still have a factor structure with two unexplained factors. This is further
reflected by the factor structure check which equals 81.4% for the specification with the value weighted
return as the only factor and 80.5% for the specification with all three factors. Hence, the additional
two factors explain little of the variation in the portfolio returns. The likelihood ratio statistic that
tests the joint significance of the cay and labor-consumption ratios is equal to 118. Although this is
a rather significant value of the LR statistic, we have to consider that it tests fifty parameters so it is
only twice the number of tested parameters which shows that all these parameters are relatively close
to zero. The LR statistic which tests the significance of the parameters of the value weighted return
is obviously highly significant.

Yogo (2006) considers a specification of the observed factor model that alongside the value weighted
return has consumption growth in durables (Acg,-) and nondurables (Ac,ondur) as the three observed
factors. We estimate his specification using the portfolio returns from French’s website.

Table 4 contains two specifications of the observed factor model from Yogo (2006). The first one has
the value weighted return as the only factor and has been discussed previously. The other specification
has all three factors. The characteristic roots of the factor model with all three factors show that the
additional two consumption growth factors fail to absorb the two factors left over in the residuals from
the model with the value weighted return as the only factor. The characteristic roots of the covariance
matrices of the residuals of these two models are almost identical which indicates that there are still
two unexplained factors left in the residuals of the three factor model. This is further reflected by the
factor structure check which equals 81.4% for the specification with only the value weighted return
and 81.5% for the specification with all three factors. The likelihood ratio statistic which tests the
joint significance of the parameters associated with the two consumption growth factors is also only
significant at the 54% significance level so we cannot rule out that the parameters associated with the
two consumption growth factors are all equal to zero.
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3 Implications of Missed Factors for the FM Two Pass Procedure

Stochastic discount factor models, see e.g. Cochrane (2001), stipulate a relationship between the
expected returns on the portfolios and the §’s of the portfolio returns with their (unobserved) factors:

E(Ry) = tnXo + BAp, (11)

with ¢y the N-dimensional vector of ones, Ay the zero-8 return and Ap the k-dimensional vector
of factor risk premia. To estimate the risk premia, Fama and MacBeth (1973) propose a two pass
procedure:

1. Estimate the observed factor model in (7) by regressing the portfolio returns R; on the observed
factors GGy to obtain the least squares estimator:

~ _ _ _\—1
B=Y1 kG (S GG) (12)

Withét:Gt—G,G:%Zzzth, Rt:Rt_RandR:%zz;lRt-

2. Regress the average returns, R, on the vector of constants ¢y and the estimated f3’s, to obtain
estimates of the zero-8 return \g and the risk premia Ap:

( ;;) ) = [(LN P BY (v B)} N (tv P BYR. (13)

The FM two pass procedure uses the least squares estimator that results from the observed factor
model to estimate the risk premia. The adequacy of the results that stem from the FM two pass
regression therefore hinge on the ability of the observed factor model to capture the factor structure
of the portfolio returns. To show this clearly, we consider the (infeasible) linear regression model for
the unobserved factors F; that uses the observed factors G as explanatory variables:

Fi= pup+0Ge+V;

a 14
5= ViaVad (14)

with Vpg the covariance between the unobserved and observed factors, Vg = cov(F;, Gy), and Vg
the covariance matrix of the observed factors, Vg = var(Gy), and Gy and V; are uncorrelated with
gt since F} is uncorrelated with e;. We substitute (14) into (2) to obtain

Ri= g+ Bup+ B6Gs + BVi + & = p+ BOG + Uy, (15)

with = pup + Bup, Uy = BV; + .. When the observed proxy factors do not explain the unobserved
factors well, § is small or zero and V; is large and proportional to the unobserved factor F;. The large
value of V; then implies an unexplained factor structure in the residuals U; of the observed factor
model (15) since Uy = SV} + ¢;. Alongside the unexplained factor structure, the small value of § also
implies that the estimand of B in (12), i.e. B4, is small. The traditional results for the FM two pass
procedure are derived under the assumption that the estimand of B is a full rank matrix so

B fd, (16)

is a full rank matrix, see e.g. Fama and MacBeth (1973) and Shanken (1992).
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Tables 2-4 in Section 2 show that for many of the observed (macro-) economic factors used in the
literature, the estimand of B, 34, is such that we cannot reject that at least some or even all of its
columns are close to zero. Table 1, however, shows that a strong factor structure is present in portfolio
returns which can be explained by the FF factors. It implies that all columns of 8 are non-zero so the
proximity to zero of 59 results from a small value of §. This is reflected by the F-statistics in Tables
2-4. They test the hypothesis that J, or some of its rows, in (14) is equal to zero. Since F} is unknown,
we approximate it by the three largest principal components or by the FF factors. Tables 2-4 show
that, when the elements of § being tested do not concern any of the FF factors, the F-statistics are
either insignificant or just barely significant. The assumption that S§ has a full rank value implies
that § has a full rank value as well. But when § has a full rank value, the F-statistics in Table 2-4
should all be proportional to the sample size just as they are when we use them to test the significance
of elements of § that are associated with the FF factors. The assumption of a full rank value of §
is therefore not supported by the data when it is associated with factors other then the FF factors.
A more appropriate assumption is to assume a value of § that leads to the smallish values of the
F'-statistics reported in Tables 2-4.

Assumption 1. The parameter § in the (infeasible) linear regression model for the unobserved
factors that uses the observed factors as explanatory variables (14) is drifting to zero:

§= =, (17)

with d a fized full rank matriz.

Traditional large sample inference requires that both 5 and § are full rank matrices, which is as
argued before not realistic in many applications. In so-called finite sample inference, no assumptions
are made with respect to 8 and ¢ and instead the disturbances of (15) are assumed to be i.i.d. normal,
see e.g. MacKinlay (1987) and Gibbons et. al. (1989). Traditional large sample inference generalizes
finite sample inference in the sense that it does not require the disturbances to be normally distributed.
The price paid for this is that 5 and § have to have fixed full rank values. Assumption 1 provides a
generalization to both finite sample and traditional large sample inference since it neither assumes fixed
full rank values for 5 and § nor normally distributed disturbances. Identical to finite sample inference,
the results obtained from it therefore apply to small values of 5 and § but do not require normality of
the disturbances. Assumption 1 is similar to the weak-instrument assumption made in econometrics,
see e.g. Staiger and Stock (1997). Assumption 1 seems unrealistic but must solely be seen from the
perspective that it leads to the smallish values of the F-statistics that test the significance of § in (14)
as reported in Tables 2-4.

Theorem 1. Under Assumption 1, the F-statistic testing the significance of § in (14) converges to a
non-central x> dzstmbuted mndom variable with km degrees of freedom and non-centrality parameter

trace(d¥d*), d* = dVGG, Wy = var(Vy).
Proof. see Appendix A. m

Theorem 1 shows that, since the correlation between the observed proxy and unobserved true
factors is small, the F-statistic testing the significance of § in (14) is not proportional to the sample
size and therefore quite small. This is in line with the F-statistics reported in Tables 2-4 so Assumption
1 is more realistic than the traditional full rank assumption for §. It extends in an identical manner to
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the LR statistics testing the significance of the elements of B in the observed factor model (7) which
are reported in Tables 2-4.7

Theorem 2. Under Assumption 1 and portfolio returns that are generated by (15), the LR-statistic
testing the significance of B in (7) converges to a non-central x? distributed random wvariable with

_1 1
Nm degrees of freedom and non-centrality parameter trace(dt'd™), d* = V2 BdVi,.
Proof. see Appendix A. m

Theorem 2 shows that when the observed factors, whose significance is tested using the LR statistic,
only minorly correlate with the three largest principal components, or put differently the FF factors,
the LR statistic is small and only minorly significant. This is exactly as we observe in Tables 2-4 for
all factors except the FF factors.

The large sample properties of the F' and LR statistics stated in Theorems 1 and 2 are in line with
the realized values of these statistics stated in Tables 2-4 for all factors except the FF ones. Under the
traditional assumption of correlation between observed and unobserved factors, all these statistics are
proportional to the sample size which they clearly aren’t. The assumption of weak correlation between
observed and unobserved factors made in Assumption 1 is therefore more appropriate for deriving the
large sample properties of statistics used in the FM two pass approach. This is especially relevant
since these properties are considerably different from those derived under the traditional assumption.
We focus on two kind of statistics which are commonly used in the FM two pass approach: goodness
of fit measures and statistics testing hypotheses on the risk premia of the observed factors.

3.1 The R?’s of the Second Pass Regression

It is common practice to measure the explanatory power of a regression using a goodness of fit measure
like the R2. Both the OLS and GLS R?’s of the second pass regression of the FM two pass procedure
are used for this purpose. We discuss them both and start with the most commonly used one which
is the OLS R2.

OLS R2. The OLS R? equals the explained sum of squares over the total sum of squares when we
only use a constant term so its expression reads

R'Py, R RM, B(BM,B) " B'M,, R
R2OLS = R/ML]JVVR = = R’MJYNR =, (18)

with Py = A(A’A)"1A’, M4 = In— Py for a full rank matrix A and Iy the N x N dimensional identit
Yy

matrix. We analyze the behavior of RQO ¢ under the assumption that the observed and unobserved
factors are only minorly correlated as stated in Assumption 1.

Theorem 3. Under Assumption 1, portfolio returns that are generated by (15) and mean returns
that are characterized by (11), the behavior of R%, ¢ in (18) is in large samples characterized by:

[BAF—Fﬁ(B’Lpr—FwLE)],PMLN(ﬂ(d+wvo)+wgc)[B)‘F—"_%(Btpbf?—"_ww‘)]
[BAF“"%(IBwLF“”wLE)]IMLN [B)‘F+% (Bw1F+¢L5)} ’

Ry s~ (19)

"Theorems 1 and 2 apply to the tests on all elements of resp. & in (14) and B in (7). When some of the elements
of § and B refer to factors that are part of the FF factors, the results in Theorems 1 and 2 apply to the tests on those
elements of § and B that do not refer to the FF factors.

17



1 1 1 _1 1 1
where /l/}LF = F?Fl/}fFv ¢L5 = ngwl’ wVG = szvdjy{/GVGG% and wsG = V‘sngGVGG% and wa’ djj@
Yya and Yig are kx 1, N x 1, k x m and N x m dimensional random matrices whose elements are
independently standard normally distributed.

Proof. see Appendix A. m

When the correlation between the observed and unobserved factors is large and their number is
the same, so d in (17) and (19) is a square invertible matrix and large compared to ¥y ¢ and 9.,
R%) g is equal to one when the sample size goes to infinity, see also Lewellen et. al. (2010).

Corollary 1. When the number of observed and unobserved factors is the same and they are highly
correlated, R?)LS converges to one when the sample size increases.

Corollary 2. When the number of observed factors is less than the number of unobserved factors but
the observed factors explain the unobserved factors well, so d in (17) is a large full rank rectangular
k x m dimensional matriz with m < k, R% s s approximately equal to

(BAF+—= (B, p+4,2)) Pat,  palBAF+ = (B, p4+4),0)]
[BAF+% (B¢1F+¢LE)}1MLN [BAFHFﬁ (IBwLF+wLE)] ’

(20)

which converges to

NpB'Pun, , paBAR
NoB Moy BAr (21)
when the sample size goes to infinity.

The scenarios stated in Corollaries 1 and 2 are also discussed in Lewellen et. al. (2010). The cases
for which Lewellen et. al. (2010) do not provide any analytical results are those where:

1. the observed factors are only minorly correlated with the unobserved factors and

2. when only a few of the observed factors are correlated with the unobserved factors and the
number of correlated observed factors is less than the number of unobserved factors.

These are highly relevant cases since they apply to the (macro-) economic factors discussed previously.
It is therefore important to have an analytical expression for the large sample behavior of R2O g SO we
understand where its properties result from.

The first important property Theorem 3 shows is that, under Assumption 1, RQO 1§ converges to
a random variable. When d is of a larger order of magnitude than the random variables vy, and
V., the latter two elements do not affect the large sample behavior of R%) Lg SO R%) g 1s a consistent
estimator of its population value. This results in the behavior stated in Corollaries 1 and 2, see
also Lewellen et. al. (2010). When d is of a similar order of magnitude than 1y and ¢¥.q, RS g
is, however, no longer a consistent estimator of its population value since it converges to a random
variable. Under case 2, the part of R2O g associated with the strongly correlated observed factors
converges to its population value while the remaining part converges to a random variable. In total,
R2O g 1s therefore also not consistent and converges to a random variable.
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Corollary 3. Under Assumption 1 and when only the first my observed factors are strongly correlated
with the unobserved factors and my is less than k, the large sample behavior of R% s 18 characterized
by
[6>\F+%(5wLF+w1/E)]IPMLNBd1 [6>\F+%(ﬁwl,F+w15)]
[BAF+%(B¢1F+¢LE)}IMLN [BAF+ﬁ(IB¢LF+wLE)] (22)
1 ’ 1
[5>\F+ﬁ(5w”’+w"5)] PM(LN : 541)(ﬂ(d2+ve,2)+ng,2)[ﬁ/\p+ﬁ(ﬁw‘p+w"5)]

[BAF“Fﬁ(IBwLFJ”wLE)]IMLN [BAF+%(/8¢1F+¢LE)} ’

2 ~
ROLS ~

where we use that P(A . B) = Pa+ Py, and d is such that d = (dy : da), with di much larger than da

and Yy 1, Yye = by Yvaa) Yev = Yoy Yeva) and dy, Yy kxma, dz, Yyga = kX my,
Yoyt N Xma, Yoyp t N X mg, my + mg = m.

Without loss of generality, we have assumed in Corollary 3 that only the first m; observed factors
are correlated with the unobserved ones. A similar result is obtained when more than m; of the
observed factors are correlated with the unobserved ones but they are correlated in an identical manner.
In that case d; would be a matrix which is of reduced rank for which can adapt the expression in
Corollary 3 accordingly.

Corollary 3 shows that the large sample behavior of R2O g consists of two components, one which
converges to the population value of R2O 1. When we use only those observed factors that are strongly
correlated with the unobserved ones and the other random component results from those observed
factors that are minorly correlated with the unobserved factors. Hence overall R2O g converges to a
random variable as well so it is not a consistent estimator of its population value.

Having now established that RQO g converges to a random variable in cases which are reminiscent
of using (macro-) economic proxy factors, it is important to establish the behavior of this random
variable. The expression of the limiting behavior of R?) ¢ is such that only the numerator is random
since the denominator of RQO g converges to its population value. Theorem 3 shows that the numerator
consists of the projection of

Mo [BAF + Z=(Br +2)]  on My (B(d+Yve) +Ye)-

The first element of the part where you project on, i.e. M, 3(d + ¢y ), is tangent to M, B(Ap +
%% ) since both are linear combinations of M,, 3. This implies that the numerator of R ¢ is big

whenever M, B(d + ¢yq) is relatively large compared to M, 1. regardless of whether this results
from a large value of d or not.

When the observed proxy factors G; explain the unobserved factors well, d is large and V; is small.
When V; is small, there is no unexplained factor structure in the residuals of (15), Uy, that result from
regressing the portfolio returns on the observed proxy factors. When we use factors other than the
FF factors, the F-statistics and pseudo-R?’s, indicated by pseudo-R? prin. comp and pseudo-R? FF?,
in Tables 2-4 show that d is small and V; often explains more than ten times as much of the variation
in F}, measured either by the three largest principal components or FF factors, than the observed
proxy factors Gy. The same reasoning applies when the observed proxy factors include the value
weighted return and we consider the increment in the pseudo-R? that results from adding observed
proxy factors other than the FF factors. Hence for all these observed proxy factors, d is small and V4
is large and causes, since it is multiplied by /3, an unexplained factor structure in the residuals of (15).
This unexplained factor structure also indicates that 5V} is large compared to ¢ in (15). The weighted

8These pseudo-R?’s result from the expression in (10) but then applied to the regression of the three largest principal
components on the observed proxy factors (prin. comp) or the regression of the FF factors on the observed proxy factors
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averages of these components using #@; <% Zle @tég) ! ,Gi=G,—-G,G=#% Zle Gy, as weight
converge to ¥y, and .. The small values of the pseudo-R?’s then imply that d is small relative to
Yy while the unexplained factor structure indicates that Sy is large relative to 1.5. Taken all
together this implies that large values of R% ¢ result from the projection of M,, (X + %%F) on
M, By g since M, By is large compared to both M, Sd and M, 1. . Hence, since By, is part
of the estimation error of B, it is the estimation error of B that leads to the large values of R2O s When
d is small. These large values of R%) 1.¢ are therefore not indicative of the strength of the relationship
between expected portfolio returns and observed proxy factors.

The same reasoning that applies to R2O g in case 1, as described above, holds for case 2 as well.
Corollary 3 shows that R% g then converges to the sum of two components. The first of these two
components converges to the population value of R%) g that results from only using the strongly
correlated observed factors. The second component results from the minorly correlated observed
factors and equals a ratio whose numerator results from the projection of

M(LN : 5d1)[ﬁ/\F + ﬁ(ﬁ%p + ww)] on M(LN : Bdq) (ﬁ (dQ + ¢VG72) + wsG,Q)

and its denominator equals [ﬂ)\F—F% (BY, p+1,.) M,y [ﬂ)\F—F% (BY, p+1,.)]. This second component

has a similar expression as RQO Ls in case 1. Hence, it is big when M, . ga,)5 (d2 + wVQQ) is large
compared to M(, . g4,)%ec,2- This occurs when either ds is large, so all observed factors are strongly
correlated with the unobserved ones which case is covered by Corollary 1, or when dy is small and
By o is large compared to 1. 5. The latter case occurs for the same reason as discussed previously
for case 1. Hence, when dj is small and the number of strongly correlated observed factors is less than
the number of unobserved factors, an unexplained factor structure in the residuals of (15) remains.
This is shown in Tables 2-4 when we use only the value weighted return alongside some factors other
than the FF factors. Tables 2-4 show that the residuals of the observed factor model exhibit a strong
factor structure so 8V} is large compared to &;. The two components Sy ¢ o and 1 o are the limits of

~1 _ _
the weighted averages of 8V} and ; when we use ﬁGgft <% ST 51 §,t> , with G5, = G2t =G\,

_ _ _ _ —1 _ ~ _ _
4 = Z?:l GgﬂgG’Lt (% Zthl G17tG’17t> , Gy = (g;i), Git:my x 1, Gay : mg x 1, as weights. This

implies that since 8V} is large compared to &; also Sy 5 is large compared to ¢ . It is therefore
the estimation error in B which results from the unexplained factor structure in the residuals of (15)
that leads to possibly large values of R2O LS

The above shows that it is the unexplained factor structure in the residuals of (15) that leads to
the large values of R% g When the observed proxy and unobserved true factors are minorly correlated.
Since these large values of R2O 1. then result from the estimation error in the estimator of the 3’s of the
observed proxy factors, they are not indicative of the presence of a relationship between the expected
portfolio returns and the observed proxy factors. An easy diagnostic to assess the adequacy of R?) LS
as a measure for such a relationship, is therefore to use a factor structure statistic, like, for example,
the one in (6).

Simulation experiment

We conduct a simulation experiment to further illustrate the properties of R%) g and the accuracy
of the large sample distribution stated in Theorem 3. Our simulation experiment is calibrated to the
data from Lettau and Ludvigson (2001). We use the FM two pass procedure to estimate the risk
premia on the three FF factors using returns on twenty-five size and book to market sorted portfolios
from 1963 to 1998. We then generate portfolio returns from the factor model in (2) with the estimated
values of 8, A\g and Ar as the true values and factors F}; and disturbances e; that are generated as
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i.i.d. normal with mean zero and covariance matrices VFF and f/sg with VFF the covariance matrix of
the three FF factors and V.. the residual covariance matrix that results from regressing the portfolio
returns on the three FF factors. The number of time series observations is the same as in Lettau and
Ludvigson (2001).

We use the simulated portfolio returns to compute the density and distribution functions of RQO LS
in (18) using an observed factor G that initially only consists of the first (observed) factor, then of the
first two factors and then of all three factors. Alongside the density and distribution function of R2O LS
that result from simulating from the model, we also use the approximation that results from Theorem
3. Figure 1.1 in Panel 1 shows that the density functions of R2O ¢ that result from simulating from the
model and from the approximation in Theorem 3 are almost identical. The figures in Panel 1 further
show that, as expected, the distribution of R?) 1, moves to the right when we add an additional true
factor. Figures 1.1 and 1.2 also show that R ¢ is close to one when we use all three factors as stated
in Corollary 1.

To show the extent to which the observed factor model explains the factor structure of the portfolio
returns, Panel 1 reports the density and distribution functions of our factor structure check. Figures
1.3-1.4 show that when we use only one factor, the three largest principal components explain around
81% of the variation which is roughly equal to the 82% that we stated in Tables 3 and 4 when we use
the value weighted return as the only factor.” The variation explained by the three largest principal
components decreases to 58% when we use two factors and 38% when we use all three factors. The
last percentage is similar to the percentage in Table 3 when we use all three FF factors.

Panel 2 shows the density and distribution functions that result from another simulation experiment
where we simulate from the same model as used previously but now we estimate an observed factor
model with only useless factors. We start out with an observed factor model with one useless factor
and then add one or two additional useless factors. Again we obtain virtually the same distributions
from simulating from the model and using the approximation from Theorem 3.

The density and distribution functions of R2OLS in Figures 2.1 and 2.2 are surprising. They
dominate the distribution of RQO ¢ in case we only use one of the true factors. Hence, based on RQO LS
observed factor models with useless factors outperform an observed factor model which just has one
of the three true factors. It is even such that the R2O g that results from using three useless factors
often exceeds the R20 1 When we use two valid factors. This becomes even more pronounced when
we add more useless factors which we do not show. To reveal that the observed factor models with
the useless factors do not explain anything, we also computed the density and distribution functions
of the factor structure check. As expected, its density and distribution functions that result from the
three specifications with the useless factors all lie on top of one another at 95% which is identical to
the value of the ratio in Tables 2 and 4 when the observed factors matter very little.

Similar results are shown in Panel 3 where we use a setting with one valid factor and then add one
or two irrelevant factors. The figures in Panel 3 show that the distribution of R2O g in case of one valid
factor and one or two irrelevant factors is similar to the one that results from two or three irrelevant
factors. The main difference between the distributions for these settings occurs for the distribution
of the factor structure check which shows that the unexplained factor structure in Panel 3 is less
pronounced than in Panel 2.

9We note that the Jagannathan-Wang data contains one hundred portfolio returns so the explained percentage of the
variation is not comparable with that which results when we use the value weighted return as the only factor for the
Jagannathan-Wang data.
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Panel 1. Density and distribution functions of R2O r,gand FACCHECK (the ratio of the sum of the three
largest characteristic roots of the residual covariance matrix over the sum of all characteristic roots) when
we use one of the three factors (solid), two (dashed-dotted) and all three (dashed). Figure 1.1 also shows

the large sample distributions from Theorem 3 (dotted lines).
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Panel 2. Density and distribution functions of R2O ¢ and FACCHECK (the ratio of the sum of the three
largest characteristic roots of the residual covariance matrix over the sum of all characteristic roots) when
we use one useless factor (solid), two (dashed-dotted) and three (dashed). Figure 2.1 also shows the large
sample distributions from Theorem 3 (dotted lines).
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Panel 3. Density and distribution functions of R2O ¢ and FACCHECK (the ratio of the sum of the three
largest characteristic roots of the residual covariance matrix over the sum of all characteristic roots) when
we use one valid factor (solid), one valid factor and one irrelevant factor (dash-dotted) and one valid factor
and two irrelevant factors (dashed).
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Panel 4. Density and distribution functions of R2O ¢ and FACCHECK (the ratio of the sum of the three
largest characteristic roots of the residual covariance matrix over the sum of all characteristic roots) when
we use three useless factors and there is a factor structure (solid line), strong factor structure (dashed line)

and weak factor structure (dashed-dotted line).

The expression of the large distribution of R%;¢ in Theorem 3 states the importance of the
unexplained factor structure for R2O g- This is again shown by the simulation results in Panels 1-3. It
all shows that RQO g cannot be interpreted appropriately without some diagnostic statistics that report
on the unexplained factor structure. Hence, R% 1g is only indicative for a relationship between portfolio
returns and the observed factors when there is no unexplained factor structure in the residuals. To
further emphasize this, we conduct another simulation experiment where we specifically analyze the
influence of the unexplained factor structure. We therefore estimate an observed factor model that has
three useless factors. To show the sensitivity of R?) g to the unexplained factor structure, we simulate
from the same model as used previously but we now use three different settings of the covariance matrix
V.. of the disturbances in the original factor model: V.. = 25175€ (weak factor structure), V. = VEE

25



(factor structure) and V.. = 0.04V.. (strong factor structure) with V.. the residual covariance matrix
that results from regressing the portfolio returns on the three FF factors. No changes are made to the
specification of the risk premia or the 8’s so the factor pricing in the model where we simulate from
remains unaltered except for the covariance matrix of the disturbances. The results are reported in
Panel 4.

The figures in Panel 4 reiterate the sensitivity of the distribution of R%; ¢ to the unexplained factor
structure in the residuals. Figures 4.1 and 4.2 show that for the same irrelevant explanatory power
of the observed factor model, R%)LS varies greatly. Figures 4.3 and 4.4 show that for the observed
factor models where R?) g is high in Figures 4.1 and 4.2 also the unexplained factor structure in the
residuals is very strong. For the observed factor model where the factor structure in the residuals is
rather mild, the density of R% g is as expected and close to zero. Hence, for the models where there
is still a strong unexplained factor structure in the residuals, RQO ¢ is not indicative of a relationship
between expected portfolio returns and the observed factors.

LLO1
Ryw Ac FF factors | cay, Ryw, | cay, Ac, | cay, Ryw, Ay,
cay Ry cayAc | cayRyy, cayAy
R%, ¢ 0.01 0.16 0.80 0.31 0.70 0.77
FACCHECK | 82.1% | 95.5% 38.2% 82.5% 95.2% 82.1%

Table 5: R-squared of the second pass regression of the FM two pass procedure and FACCHECK (the percentage
of the variation explained by the three largest principal components) for different specifications from Lettau
and Ludvigson (2001).

F52-01
Ryw Ac FINAN | LVX06 | LNO5 | SV06 | Y06
R%, ¢ 0.07 0.04 0.51 0.58 0.74 0.65 0.54
FACCHECK | 81.4% | 93.9% | 94.3% | 94.3% | 93.8% | 80.5% | 81.5%

Table 6: R-squared of the second pass regression of the FM two pass procedure and FACCHECK (the percentage
of the variation explained by the three largest principal components) using the factors from Li et. al. (2006)
(LVX06), Lustig and Van Nieuwerburgh (2005) (LNO05), Santos and Veronesi (2006) (SV06) and Yogo (2006)
(Y06). All use the quarterly portfolio returns from French’s website.

Tables 5 and 6 report R%; ¢ and our factor structure check (6) for the specifications in Tables
3 and 4. Many of the specifications stated in Table 5 and 6 have high values of RQO 1.g- Except for
the specification using the FF factors, all of these specifications also have large values of the factor
structure check, which indicates that there is an unexplained factor structure in the first pass residuals,
and small values of the pseudo-R?’s in Tables 2-4 which indicate a small value of d. We just showed
that R2O g 1s then not indicative of a relationship between expected portfolio returns and observed
factors since these large values result from the estimation error in the estimated 3’s of the observed
proxy factors. Tables 5 and 6 correspond with Lettau and Ludvigson (2001), Li et. al. (2006), Lustig
and Van Nieuwerburgh (2006), Santos and Veronesi (2006) and Yogo (2006), so the R%, 4’s reported
in these articles are not indicative of a relationship between expected portfolio returns and observed
proxy factors.
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GLS R?. The GLS R? equals the explained sum of squares over the total sum of squares in a GLS
regression where we weight by the inverse of the covariance matrix of R :

2 )
RGLS = R'MR

My V2B (23)

with M = Vi — Vigen (U Vapin) W Vag-

Theorem 3 shows that the large sample distribution of R%) g depends on the explanatory power
of the observed proxy factors for the true unobserved factors. In order to obtain an expression for
the large sample distribution of Ré 1 Which applies to a large range of settings, we therefore also
assume that the explanatory power of the observed proxy factors drifts with the sample size as stated
in Assumption 1.

Alongside the explanatory power of the observed proxy factors, the large sample distribution of
R%; 1.¢ crucially depends on the scaled risk premia of the unobserved true factors:

(%2) . (24)

When we use the FF factors, the relative size of these size premia is small and proportional to the
realization of a standard normal random variable. This is shown in Table 7 for the three data sets

considered previously. Alongside the risk premia Ag estimated using the FM two step estimator, Table
. . . . .. . . -1
7 contains estimates of the relative risk premia in (24) and their quadratic form N (%) AF.

To construct the large sample distribution of R%;LS, we assume that the relative risk premia in
(24) do not change with the sample size which is in line with their relatively small values reported in
Table 7.

_1

. . . 2 . . .
Assumption 2. The scaled risk premia ( YEE Ap remain constant when the sample size increases
p P L p
S0

(Ygﬂ)_% Ap =1, (25)

with | a k dimensional fized vector, for different values of T.

LLO1 TW96 F52-01
L (25) " ap 24.1 10.1 15.2
_I _1 1 _1 _I
M | Vet de | (55) Tae | de | Vel | (58) PAe | de | Vidae | (%5) Par
Ryw 132 0.22 2.62 | -051 | -0.12 —221 | -Li2| -0.13 181
SMB 0.47 | 0.024 0.28 0.21 | 0.10 1.86 0.47 | 0.12 1.78
HML 146 | 0.35 4.14 0.24 | 0.072 1.30 132 | 021 2.94

Table 7: Estimates of the risk premia and scaled risk premia that result from the FM two pass procedure for
data from Lettau-Lutvigson (2001) (LLO1), Jaganathan and Wang (1996) (JW96) and from French’s website
(F52-01).
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Theorem 4. Under Assumptions 1, 2, portfolio returns that are generated by (15) and mean returns
on the portfolios that are characterized by (11), the behavior of R%; ¢ in (23) in large samples is

characterized by:
()} ()
+y* o P 11 +
0 Mo {(W’VFF2 dvgc)+¢*} 0

0

VRR?-LN

R, .~ >
GLS W/l o L W/l o )
0 V};é ‘N 0

where ¥* and @* are independent N x 1 and N x m dimensional random matrices whose elements
have independent standard normal distributions, W is an orthonormal k x k dimensional matriz which
contains the eigenvectors of

(26)

((8'8)'Vier(88)F + (8'8) ¥ 8VeeB(8'8) 2 27)
and
My Dy ( WV (5)7 o )
Vi N (B VeeB1 )28 N

VIBEB) V(B8 B + BL(FLVeeB L) BLlon} ! ( WiV (99) G ) ,
{n1B(B'8) Ver(B'5) 1 (81 VeeB1)™ B len} (Vo) 35 i

with B, the N x (N — k) dimensional orthogonal complement of 3, so 8, =0, 8,8, = IN_k.

(28)

Proof. see Appendix A. =

We use Theorem 4 to classify the different kinds of behavior of R%; . We start with a strong
observed proxy factor setting.

Corollary 4. When the number of observed factors equals the number of unobserved factors and
they explain them well, the large sample behavior of R%;LS s characterized by

wi) o\ Wi\
o )T, 34 - o )™
VEELN{ (WIVFFZ VrGVad )+ﬁv§1§ VEZ«:*}

0

R, .~ .
GLS Wi\, Wi . ’
0 VI;R% ‘N 0

Furthermore, when the observed factors are an invertible linear combination of the true factors,
_1 _1
Ve VraVed = Iy
The large sample behavior of R2G ¢ in Corollary 4 differs considerably from that of RQO .- Corollary
1 states that Rzo g converges to one when the observed factors explain the unobserved factors well
and their numbers are the same. Because W'l is of the same order of magnitude as the standard

normal random variables in 1*, this is not the case for Ré 1g- Only when the scaled risk premia are
very large, Ré g is approximately equal to one.

(29)
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Corollary 5. When the relative size of the risk premia is very large and the number of observed
factors equals the number of unobserved factors and they explain them well, RQGLS s approzimately
equal to one.

Another interesting aspect of the large sample distribution of RéLS is that it depends on the
number of portfolios N. For the same values of the other parameters, a larger number of portfolios
implies a smaller value of Ré IS

Corollary 6. When the observed factors consist of the first m of the true factors, the large sample
behavior of RQGLS 1s characterized by

(7)) ()
M
0 V};%L { W/(¢*Voé/ﬁ)>+ﬁvgé‘/§w*} 0

R'N

R, .~ - ,
GLS W'l W'l
+y* o M1 +*
O VRRZLN O

with ¢y a (k—m)xm dimensional random matriz whose elements are standard normally distributed
and independent of ©* and ™.

(30)

Corollary 6 shows that when the observed factors explain fewer of the true factors, the Ré g goes
down on average. This argument extends to the case where the relative risk premia are large.

Corollary 7. When the observed factors consist of the first m of the true factors and the relative
size of the risk premia is large, R2GLS converges to

() 2o 5)
Rews W'l VRR’LN{< 0 )V}V'z '
(EEN ()

Simulation experiment

We use our previous simulation experiment, calibrated to data from Lettau and Ludvigson (2001),
to further illustrate the properties of RQG g and the accuracy of the large sample distribution stated
in Theorem 4. Panel 5 contains the density function of Ré ¢ for different settings of the explanatory
power of the observed proxy factors and the size of the relative risk premia.

Figures 5.1 and 5.3 use the data generating process that corresponds with the estimated factor
model which uses the three FF factors and their risk premia. The observed proxy factors in Figure
5.1 correspond with the true ones while they are irrelevant in Figure 5.3. Figures 5.2 and 5.4 use
the settings as used for Figures 5.1 and 5.3 except that the risk premia are ten times as large. The
observed proxy factors used for Figure 5.2 correspond with the true ones while the observed proxy
factors used for Figure 5.4 are irrelevant.
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Figure 5.3. Irrelevant factors, standard premia Figure 5.4. Irrelevant factors, large premia
Panel 5. Density of RQG ¢ for simulation experiment calibrated to Lettau and Ludvigson (2001). One factor
(solid), two factors (dash-dot), three factors (dashed). The dotted lines result from the large sample

approximation from Theorem 4.

Figure 5.1 shows the density function of R2G 1 When we use one, two or three of the true factors.
We compute these three density functions by simulating from the model and using the large sample
approximation stated in Theorem 4. For all three cases, the resulting density functions are almost
indistinguishable. The density functions show that R%;LS is well below one even if we use all three
factors. When we use only one or two of the three factors, Ré g 18 close to zero. This all results from
the small size of the relative risk premia. When we multiply these risk premia by ten as in Figure 5.2,
the density of Ré g When we use all three factors lies close to one. Also its variance has decreased
which applies to the density when we use two factors as well. This density has slightly shifted to the
right.
Figures 5.3 and 5.4 show the density of Ré s When we use one, two or three useless factors. Figure
5.3 uses the setting where the risk premia correspond with those from Lettau and Ludvigson (2001)
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and Figure 5.4 uses risk premia which are tenfold the estimated ones. Unlike when we use the true
factors, the larger risk premia have no effect on the density of Ré LS

The density of RéLS in case we use one, two or three useless factors all lie quite close to zero.
However, the density of RéLS when we use all three true factors does not lie far from zero either.
The density of Ré g When we use three useless factors therefore has a lot of probability mass in the
area where the density of Ré 1 When we use the three true factors has a sizeable probability mass.
This implies that we just based on R%‘; ¢ cannot make a trustworthy statement about the quality of
the second pass regression. Identical to Rzo g+ We can use a measure which indicates the unexplained
factor structure in the first pass residuals to assess Ré 1, more decisively.

The expressions of the large sample distributions of R20 g and Ré s in Theorems 3 and 4 depend
on the parameters d and [. Unless the observed factors explain the true unobserved factors well and
the risk premia are large, we cannot estimate these parameters consistently. The latter is needed in
order to be able to use the bootstrap to approximate the distribution of RQO g Or Ré 1s- Hence, the
bootstrap cannot be used to conduct inference on either R2O g OF R%; 5> when the observed factors do
not explain the unobserved factors well.

3.2 Tests on the Risk Premia

We just showed that the large sample distributions of RZOLS or R%;LS are such that we can only
unequivocally interpret them when there is no unexplained factor structure left in the first pass
residuals. Alongside R% g and Ré g, this argument applies to many other second pass statistics that
are commonly used as well. The most prominent of these is the two pass t-statistic.

The FM two pass t-statistic testing the hypothesis that the i-th risk premia is equal to A;p,
Ho : A = Xijo, reads

A —\s
t(\i) = =&, 32
with A\p = (2\1 - Am)’ resulting from (13) and var();) the variance of the i-th element of Az. The
variance of (Ag, Ar) equals
~ ~ . 2 PPN -1 PN ~ PN PN PPN -1
UCLT()\Q, )\F) = % (LN . B),(LN . B) (LN . B),@(LN . B) (LN . B),(LN . B) R (33)

with © = ng(l —1—5\/FVGG*15\ r), and the variance of the i-th element of \r equals the (14+1)-th diagonal
element of this covariance matrix, see Shanken (1992). The FM two pass t-statistic has a standard
normal distribution in large samples when the null hypothesis holds and the estimand of B , 50, has a
full rank value. This implies that both 8 and § have to be sizeable full rank matrices. When the full
rank assumption fails, for example, since Assumption 1 holds, the large sample distribution of the FM
two pass t-statistic is not normal and we cannot use the FM two pass t-statistic to conduct inference,
see Kleibergen (2009) and Kan and Zhang (1999). We have just shown that Assumption 1 applies
to many empirically relevant settings so we then cannot use the FM two pass t-statistic to conduct
inference.

Assumption 1 is similar to the weak instrument assumption made in linear instrumental variables
regression, see e.g. Staiger and Stock (1997). There is an extensive literature on weak instruments in
econometrics which has led to the development of statistics whose large sample distributions are not
affected by the strength of the instruments, see e.g. Anderson and Rubin (1949), Kleibergen (2002),
Moreira (2003) and Kleibergen and Mavroeidis (2009). Still, the traditional ¢-statistic is commonly
used. Stock and Yogo (2005) have therefore analyzed the sensitivity of the large sample distribution of
the t-statistic to the value of a pre-test for weak instruments that results from the first stage regression,
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i.e. the first stage F-statistic. Stock and Yogo (2005) show that the large sample distribution of the
t-statistic is approximately standard normal when the first stage F-statistic exceeds ten and differs
from a normal distribution when the first stage F-statistic is less than ten.

The first stage F-statistic tests if the instruments used for the instrumental variables regression
are jointly significant in the first stage regression. With respect to the FM two pass regression, this
is analogous to testing if the observed proxy factors in the first pass regression are jointly significant.
The LR statistics in Tables 2-4 test the significance of the observed proxy factors in the first pass
regression. Since the first stage F-statistic is defined as an F-statistic, so it results from dividing by
the number of tested parameters, a value of the first stage F-statistic of around ten is comparable
with a value of the LR statistic that equals ten times the number of tested parameters. This means
that the cutoffs for the LR statistic that allow us to use the FM t¢-statistic are two hundred and fifty in
case of twenty five parameters, five hundred in case of fifty parameters, seven hundred and fifty in case
of seventy five parameters etc.. The only two settings in Tables 2-4 for which the LR statistics exceed
these thresholds are when there is one observed proxy factor which equals the value weighted return
or when the observed proxy factors equal the FF factors. For all other specifications, either the LR
statistic that tests the parameters of all observed proxy factors or the LR statistic that tests the value
of the parameters of the observed proxy factors that are incremental to the value weighted return are
below the threshold value. These specifications are obviously also those for which the observed factors
leave an unexplained factor structure in the first pass residuals. For all these specifications, we should
use the analogs of the weak instrument robust statistics for factor models developed in Kleibergen
(2009). We use four of these identification robust factor statistics which are stated in Appendix B:
the factor Anderson-Rubin (FAR) statistic, the factor extension of Kleibergen’s (2002, 2005) Lagrange
multiplier statistic (FKLM), the factor extension of Kleibergen’s (2005) J-statistic (FJKLM) and the
factor extension of Moreira’s (2003) conditional likelihood ratio statistic (FCLR).

The four identificaton robust factor statistics that we use test a hypothesis on one element of Ap,
say Ho : A1 = A1, in a different manner. The FAR statistic tests the joint hypothesis of factor pricing
stated in (11) and Hy. The FJKLM statistic tests the hypothesis of factor pricing given that Hy holds.
The FKLM and FCLR statistics both just test Hg. We can use each of these four statistics to construct
a 95% confidence set for \; by specifying a grid of s different values for A; g, ()\io ... A\lo). We then
compute the statistics for each different value of A; o in the grid. The 95% confidence set consists
of all values of A\j g for which the statistic is below its 95% critical value. These confidence sets are
trustworthy even when Assumption 1 applies and show if the observed series are informative about
the risk premia. If the latter is not the case, these confidence sets are unbounded which shows that
the observed series do not contain (much) information about the pricing of the associated factors, see
e.g. Dufour (1997). In the sequel, we discuss these confidence sets for two settings of the observed
proxy factors which are representative for the results at large.

Lettau-Ludvigson (2001): consumption based and value weighted return factors We use
two different specifications from Lettau and Ludvigson (2001). The first specification has three con-
sumption based factors: consumption growth, the consumption-wealth ratio (cay) and the interaction
between consumption growth and the consumption-wealth ratio. The second specification has the
value weighted return as its single factor. The specifications correspond with the “cay, Ac, cayAc”
and “R,,,” columns in Table 3. Table 8 contains the FM two pass and maximum likelihood (ML)
estimates, see Gibbons (1982).10 We use the four identification robust factor statistics, the FM two
pass t-statistic and the t-statistic based on the ML estimator to construct the confidence sets for the

10 A5 discussed in Appendix B, the four identification robust statistics all have the ML estimator as their minimizer so
we do not report separate estimators for these statistics.
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risk premia. Figures 6.1-6.4 in Panel 6 each contain six (one minus the) p-value plots, one for every
statistic. These figures also contain a straight line at 0.95 which enables us to construct the 95%
confidence set using the intersection of the p-value plot with the line at 0.95.

For the first specification with the consumption based factors, Figures 6.1-6.3 show the p-value
plots of the risk premia using the different statistics. The FM t-statistic is the statistic that is almost
solely used in the literature. Figures 6.1-6.3 show that according to the FM t-statistic the risk premia
on the consumption growth factor and consumption-wealth ratio are not significant at the 95% level
while the risk premium on the interaction between consumption growth and the consumption-wealth
ratio is. This can be concluded from the intersection of the p-value plot of the FM t-statistic and the
line at 0.95. It also results from the risk premia estimates and standard errors in Table 8. Lettau and
Ludvigson (2001) use the significant risk premium on the interaction between consumption growth and
the consumption-wealth ratio to advocate an extension of the consumption capital asset pricing model
in which the consumption growth’s risk premium changes over the business cycle. These findings,
however, do not correspond with those obtained from the identification robust factor statistics. For
all three risk premia, the 95% confidence sets that result from any of the identification robust factor
statistics are unbounded. The p-value plots of these statistics in Figures 6.1-6.3 do not intersect with
the line at 0.95 or lie below it at large values of the risk premia. Hence, the 95% confidence sets
that result from the identification robust factor statistics are unbounded. It shows that we cannot
determine the risk premia. This results since the consumption based factors are not able to eradicate
the factor structure as shown in Table 3. Because the consumption based factors leave a strong
unexplained factor structure in the first pass residuals, ¢ is rather small as shown by the LR and F
statistics in Table 3.!' The risk premia can then not be identified which leads to a large range of
plausible values as indicated by the unbounded confidence sets.

Figure 6.4 contains the (one minus the) p-value plots for the risk premium on the value weighted
return when it is the only factor. They are also computed using the statistics discussed before. The
results in Figure 6.4 correspond with the “R,,” column in Table 3. Table 3 shows that the value
weighted return eradicates one of the factors in the portfolio returns. The values of its § and/or (3
parameters are therefore sizeable as revealed by the huge value of the likelihood ratio statistic testing
the significance of these parameters, 765. Because of these large values, the p-value plots that result
from the identification robust factor statistics and the FM and MLE t-statistics are almost identical
and all indicate that the risk premium on the value weighted return is not significant at the 95% level.

The differences in the p-value plots of the identification robust factor statistics in Figures 6.1-6.4
result since they do not test the same hypothesis. The FKLM and FCLR statistics just test if the
respective risk premium is equal to a specific value which explains why they are rather similar and
equal to zero at the ML estimate. The FAR and FJKLM statistics also or just, in case of the FJKLM
statistic, test the hypothesis of factor pricing which is stated in (11). This explains why the p-value
plots associated with them are never equal to zero because the number of moment equations in (11)
exceeds the number of risk premia.

In Figure 6.4, the p-value plots of the identification robust FAR and FJKLM statistics are not
visible. This results because they are significant for all values of the risk premium. It shows that
the hypothesis of factor pricing is rejected when we use the value weighted return as the only factor.
Hence, the factor pricing moment equation in (11) does not hold, so the average portfolio returns are
not just spanned by the ’s of the value weighted return.

HFor example, Table 3 shows that the p-value for testing the significance of consumption growth is only 6%.
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Panel 6. p-value plots for the risk premia that result from different specifications used in Lettau and
Ludvigson (2001). Figures 6.1-6.3: three factor model. Figure 6.4 single factor model. FM two pass -
statistic (solid line), MLE t-statistic (points), FKLM (solid-plusses), FCLR (dashed), FJKLM
(dash-dotted), FAR (dotted).

Figures 6.1-6.4 show the different conclusions reached when we use either the FM t¢-statistic (or
ML t-statistic) or one of the identification robust factor statistics in case the explanatory power of
the observed proxy factors is small. When the explanatory strength of the observed proxy factors is
large, there is hardly any difference between the FM t-statistic and the identification robust factor
statistics. This results since the standard normal large sample distribution of the FM t-statistic is
then valid which is not the case when the explanatory power is minor. The large sample distributions
of the identification robust factor statistics are valid in either case so the conclusions drawn from these
statistics are valid for all possible explanatory strengths of the observed proxy factors.

We note that the ML estimates for the risk premia on the consumption based factors in Table 8
can be large and quite different from the FM two pass estimates. Table 3 shows that the § and/or
§ parameters associated with the consumption based factors are all quite small. In the second pass,

34



LLO1
Ry Ac cay | cayAc
FM 0.022 | —0.13 | 0.057
0.16 0.40 0.025
MLE —1.44 | —=3.78 | 0.0077
1.10 3.00 0.06
FM | —-0.31
0.96
MLE | —1.38
0.68

Table 8: FM two pass and ML estimates of the risk premia for different specifications used in Lettau and
Ludvigson (2001). Standard errors (with Shanken correction for FM standard errors) are listed below the
estimates.

we kind of divide by the estimated parameters from the first pass so their proximity to zero explains
the large values of the ML estimates!?. This also explains why the FM and ML estimates of the risk
premium on the value weighted return in Table 8 are quite similar because its 8 and/or d parameters
are sizeable.

Remaining factor specifications The other specifications of the observed proxy factors can be
classified along the lines of the two specifications discussed previously. First there are the specifications
for which, according to Tables 2-4, the 5’s of some or all of the observed proxy factors are rather small
and second are the specifications for which the f’s of all observed proxy factors are large. The
95% confidence sets of the risk premia that result from the identification robust factor statistics are
unbounded for the first setting. According to the two pass t-statistic many of these risk premia are,
however, significant so the identification robust factor statistics again lead to different albeit but more
credible conclusions. For the specifications where the 8’s of all observed proxy factors are large, the
95% confidence sets that result from both procedures are similar.

4 Conclusions

Portfolio returns exhibit an (unobserved) factor structure. This factor structure has to be captured
appropriately by the observed proxy factors for the traditional statistical criteria used in the FM
two pass procedure, like, for example, the OLS and GLS R? and second pass t-statistics, to be
straightforward to interpret. When the observed proxy factors do not capture the factor structure
appropriately, the OLS R? can still be large. This large value is, however, not indicative of the
relationship between the expected portfolio returns and observed proxy factors since it results from the
unexplained factor structure in the first pass residuals. For the GLS R?, we show that its distribution is
confined to rather small values both when the observed proxy factors are strong or minorly correlated
with the true unobserved factors. This makes the GLS R? also not straightforward to interpret. For
both of these goodness of fit measures, we therefore suggest to analyze them based on a measure of the
unexplained factor structure in the first pass residuals. When this criteria indicates that there is no
unexplained factor structure in the first pass residuals, both the OLS and GLS R? are straightforward
to interpret. When there is, however, a considerable unexplained factor structure, we have to interpret

2For the same reason, the distribution of the ML estimator, just like the distribution of the ML estimator in the
linear instrumental variables regression model, has no moments so the mean and variance of the distribution of the ML
estimator are infinite. The same holds to a lesser extent for the FM two pass risk premia estimator for which we can
show that its moments exist up to the order of the number of portfolios minus the number of factors which is around 25.
Its distribution therefore has a finite mean and variance so extreme values of the FM risk premium estimator are less
likely than for the ML estimator, see Kleibergen (2009).
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them with caution.

Similar arguments apply to the second pass t-statistic whose large sample distribution differs from
the standard normal one when the 3’s of the observed proxy factors are small. When these 3’s are
small, an unexplained factor structure is present so it implies that both the second pass R?’s and
t-statistics have to be interpreted with caution. The large sample distributions of the identification
robust factor statistics of Kleibergen (2009) are not sensitive to the §’s of the observed proxy factors
so we recommend these to be used instead of the second pass t-statistic.

Many observed proxy factors proposed in the literature, like, for example, consumption and labor
income growth, housing collateral, consumption-wealth ratio, labor income-consumption ratio, inter-
actions of either one of the latter three with other factors, etc., leave a considerable unexplained factor
structure in the first pass residuals. The high R?’s and significant t-statistics that are reported for
these factors therefore have to be interpreted judiciously.

Previously suggested solutions to the inferential issues with second pass R?’s and t-statistics do
not work well for different reasons. One suggestion is to use the bootstrap. The bootstrap, however,
relies on consistent estimation of the risk premia of the observed proxy factors. It fails therefore for
the same reason as why the large sample distribution of the second pass t-statistic no longer applies.
Another suggestion is to add other portfolios to the typically used pool. Although this can reduce the
factor structure in the portfolio returns, a sizeable factor structure typically remains present.

Appendix A
Proof of Theorem 1. The least squares estimator of d reads
. _ _ N1
b= XL RG (S GGr)

and the F-statistic (times number of parameters tested) testing if the factors G; have an effect on F;
reads .
F-stat = trace [V‘;‘}(S (Zthl GtGQ> 5] ,

with Vi-y an estimator of the covariance of the residuals, Viry = —t— Zle(ﬁt — 0GY)(Fy, — 6G,).
Under Assumption 1 and since VVV — W, % Zthl GG}, — Vga, we have that
P p

. N N |
VTé= VT, (%Gt + W) Gy (Zthl GtGQ)
_ _ N |
= (XL GG+ H YL 06 (L GG) = d+ iy,
_ | 1 _1
with ﬁztj’zl VG <% S GtGQ — Yve = ViiyvveVes and ¢y is a k x m dimensional
random matrix whose elements are independently standard normally distributed,
F-stat = trace [V‘/_‘}(\/T(As) (% ST ét@é) (\/Tg)’}

— trace [(d" + ) (d° + Via)] ~ X (trace(d”d"), km),

1 1
where d* = V;%,,dV,2 and x*(a,h) is a non-central x? distributed random variable with h degrees of
freedom and non-centrality parameter a.
Proof of Theorem 2. The least squares estimator B reads

~ _ _ _\—1
B=Y, kG (SL GG
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Under the models in (2), (14) and Assumption 1, we can specify it as

B= S, (BG4 V) +2) G (S0, Gi6r)
= 5 [p (T 00 + Fr T Vi) + frThn ] (PRl

_ o N 1 _1
We now use that %Zthl GG} > Vaa, % S VG <% ST GtG;> e Yyg = Viiv¥iaVad s

_ _ _\—1 1 _1
% ST ey <% ST GtGQ — Voo = V2 iaVead, and ¢, and 95 are independent k X m and
N xm dimensional random variables whose elements are independently standard normally distributed.

Yy and 1. are independent since F; and €; are uncorrelated so the same applies for V; then as well
since it is an element of F;. Combining all elements, we obtain the limiting behavior of B :

VTB — Bld+idve) + Yo
The Likelihood ratio statistic equals

LR = T |log( ZN)‘) — log(‘f)m
= T [log(|E571))]
= T |log(|Iy + B (ﬁ >t Gt@:ﬁ) B’iflm
where we used that the restricted covariance matrix estimator,
S= XL RE
T BONR B + B (i S i)
- 2 + B <ﬁ Z)TZI Gtézlt> Bla

with ¥ = = Zthl(Rt — BGy)(R; — BG;)'. Upon conducting a second order mean value expansion
around log |Ix|, the Likelihood ratio statistic can be approximated by

LR = Tlog(|In|) + vec [B (ﬁ Zthl Gt@é) B’i_l}lvec(IN) + O0,(T72)
trace [B (ﬁ ST (;t(;;) B’i_l}
trace [(8 (d + dye) + Yea) Vaa (B (d + dya) +¥u) Vag]

trace [(d7 4+ Yhae) (dT + Vjea)]
2 (trace(dt'dt), Nm)

Q

(e

2

_ . _1 1
since %ZtT:l GG, ? Veoa, ¥ ? Ver = BVrrpfB + V.., and we used that dT = Vieg BdVEa,

_1 1
Vin (BYve +v.6)Via = Yre With Y5 a N x m random matrix whose elements are independently
normally distributed, vec(A) is the column vectorization of the matrix A.

Proof of Theorem 3. The expression of R2O LS "

R2 _ R'M, B(B'M,yB)"'B'M,\ R
OLS R'M R )
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shows that it is a function of R and B. The large sample behavior of B undt_ar Assumption 1 is stated
in the proof of Theorem 2 wh_ile the independent large sample behavior of R is characterized by (the
asymptotic independence of R and B is shown in Shanken (1992) and Kleibergen (2009))

R: %Z;:1MR+BFt+Et
= 7 2t + Bup) + B(F — pp) + &
with E(R) = pup + Bup = tnXo + BAr as stated in (11) so

My R= £ 50 My (BAr + (Fy— i) + & S0y Moyer
SO _
\/T(MLNR - MLN/B)\F) 7 LN/BwF + MLNwav
where % ZZ;I Fi—pupy - Y and % Zle £t - 1, with ¥ and v, independently normally distributed

k and N dimensional random vectors with mean 0 and covariance matrices Vpp and V.. which are
independent of ¢y, and ¥_ as well, or

M, R~ M, B\r+ ﬁ(MbNﬁwLF + Moy,e).
We insert the expressions of the large sample behaviors of M, , R and B into the expression of R2O LS
to obtain its large sample behavior:

[BAF‘Fﬁ (5¢LF +9.e )],PMLN B(d+vya)+tveq) [B)\F‘F% (5¢LF +'¢Ls)]
[ﬁ)\F‘F%(/ngF_"wLa)]/MLN [BAF""ﬁ (BwLFJ"st)}

2
Rops ~

Proof of Theorem 4. The spectral decomposition of the covariance matrix of the portfolio returns
in (5) can be specified as
Vrr = P1A1P{ + PQAQPé,

with A; and Ag the k x k and (N — k) x (N — k) diagonal matrices that hold respectively the largest
k and smallest N — k characteristic roots. The orthonormal N x k and N x (N — k) dimensional
matrices P; and P, contain the principal components/eigenvectors. Because of the factor structure,

P = BQ
P2: Bj_a

with 8, the N x (N — k) dimensional orthogonal complement of 3, so 8,8 =0, 8,8, = IN_k, and
Q is a k x k dimensional matrix which makes P; orthonormal, so

1
Q=(8'B)2W
1 1 1 1
W' (B8 Ver(88)F + (B8) ¥BVeBB'8) 3| W = Ay,
with W an orthonormal k£ x k dimensional matrix. We use the spectral decomposition of Vrp to

1 1
. . -1 -1
construct the inverse of its square root, so Vo7 VrrVyp = IN :

1
_1 A, 2p!
ViR = ( 1,% 1)
Ay ? Py

N[=

_ [ W [EBEVEREB)E + (88 VEVLBEB) ] T (58) 2
AR
_ ( W [Ver + (8'8)78'VeeB(8'8) ) 2 (88) 726 )
Ay 2
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We can further approximate [VFF + (B'8) VB V. B(B'B)~ ] 2

o

_1 _1
[Vier + (B'B8) VB VBB'B) ] 2 Vi — sVip(B'8) VB Ve B(B'B) Vg,
which results from a first order Taylor approximation. Because of the factor structure, the second

1
component of the approximation of [Vpp + (8'8)Y8'VeeB(8'8)~"] 2 is much smaller than the first

component and
1

[Ver + (B'8) " VB'VeB(B'8) Y] 2~ Vi

[

B we first construct the

mwl»—t

To construct the large sample behavior of M _ 1 VI;,?R and M _1 V

VRR LN VRR LN

1 1
large sample expressions for V7 BV and M _ 1

Vieg (N

_1 1 w' v, '8)-V VL. ! aN=11"3 (a4l a\—1 !
vdavh, = ( [FF+Wﬁ>/i%ZWﬁ>] (8'8)718 )
2 1

— w’ [VFF + (6,5)_1/5, 555(6,5)_1]_% VF%'F )

1
BVEr

Q
=
'TJ<\
Ew
"{Em
|
N——

To obtain M _ 4 wenote that Vg B?. LN, with vy an M-dimensional vector of ones, reads:
Veg (N

on [ WVEA(BB) B
Veg N & ( (5LXZEEL) )Qﬁle >
SO 1
. zm_<WWﬂwaw>
Var N (B VeeB1) 26 en 1 /
The specification of GLS R? reads

_1_ 1 _
(M _y Veg B)'P Ly My Ve B)
VRE N M 3 Ver? VRN
R2, = VYRR ‘N
GLS — ,% _ ,% _
(Veg R'M _1 (Vyg R)
VRR?-LN

We proceed with Constructlng expressions for the large sample behavior of the components of the GLS

R? VRR R and VRR B where we use both strong and weak factor settings for the latter.
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V. R. The large sample behavior of R is constructed in the proof of Theorem 3:

:U Dl

1
R~ unyXo+BAr+ ﬁw) + ﬁ% =unXo + BVEr(Veg Ar) + ﬁ(ﬁwF + ).

_1
Under Assumption 2, [ = V2 ApV/T is constant and we can specify the large sample behavior of
_1_
VT M 1 Vipp R as:

Vrg N
_1_ _1 1
VIM 4 VpgR= M 4 V2 {B Vipl (BwFera)}
VRR LN VRRLN
~ M WY L vid (Bur +v.)
~ VR_R%LN 0 RR F £
W'l
- M *
VRTR%LN {< 0 > 9 }

with ¥* = Vi (Bup + 1.) ~ N(0, ).

1,
g B, we distinguish between strong and weak factors.

1,
V,2B. For the large sample behavior of Vj

Strong factors. When the observed factors are strong and their number equals the true number
of unobserved factors, the large sample behavior of B is characterized by (16):

B= BVrcVag + Jetec:

1.
It results in a large sample behavior of M 3 Vrpi B which is characterized by:

VRE N
1 1
20 _ 2 4+ L
Moy VedB= M oy Ve {5 VirVe VFfVGG ﬁwEG}
WIV_EV V_E _1
~ M FFYFGYGG | + 5=V, 2V Vaé
Vad i 0 ) Vi } e

with ¢* a N X m dimensional random matrix whose elements are independently standard normally
distributed.

Weak factors. When the observed proxy factors are minorly correlated with the observed true
factors as outlined in Assumption 1, the large sample behavior of v/T'B is:

VIB = Bd+1ve) +veo

1,
and results in large sample behavior of v/T va 1 V, }g B which is characterized by:
RR 'N
1. 211 _1 _1
VIM _y VppB= M _4 {VRRQﬁVF%F VFF2d> + Vi (BYve ‘H/Jsa)}
Ve LN ViR N L L
~ M W'VpddVia | 4+ Vc?é
VRR7 LN 0

[

_1 1
with ¢* = Vi g (BYy g + Yeq) Vg @ N X m dimensional random matrix whose elements are indepen-

dently standard normally distributed. The identity covariance matrix of ¢* results since B — 0 under
P

Assumption 1.
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GLS R2. Combining the large sample behaviors of R and B, we obtain the large sample behavior
of the GLS R? under weak and strong factors.

Strong factors:

!

W'l ol e
0 Moy
vo32

i o
1 1
WV 2VpaV, 2 -3 4 0
PR ( PP VFGYGG )+ Lv2vier

R2 — 7 3
o Wi +o* 8 M Wi +*
0 vz L\ 0

_1 _1
which results since W'V 2 VeaVeA is an invertible k x k matrix.

M 1 1
R, o~ . .
GLS W'l o b W'l o
0 vigoe |\ 0

Appendix B. Identification robust factor statistics

Weak factors:

To test a hypothesis on one element of Ap, say A\i, the identification robust factor statistics first
remove the zero- return Ay by taking all portfolio returns in deviation from a baseline portfolio return,
say ¢ N

Ri = Riy — tN—1TNt

with Ryy = (r1¢...7n—1¢) and ¢n_1 is an (N — 1)-dimensional vector of ones. The identification robust
factor statistics are invariant with respect to the choice of the baseline portfolio and also with respect
to other transformations.

If \r has more than one element and we want to test the hypothesis, Ho : A1 = A1 9, we first com-
pute the maximum likelihood estimates under Hg of the other elements of Ag : As... Ay, see Gibbons
(1982). These result from the characteristic vectors (eigenvectors) of a characteristic polynomial for
which we use the residuals of three linear regressions:

Ri = 041(@115 + o) + Zit
B 1= OtQ(Glt + )\170) + 1~t (34)
Gor = a3(Gar + M) + Go

where Gy = (g;) with G a scalar and Go; an (m — 1)-dimensional vector, G; is the vector with

observed factors in (7). When we estimate «j, ay and a3 using least squares and 7~€t, 1, and égt are
the residuals of these least squares regressions, the characteristic polynomial from which we obtain
the maximum likelihood estimators reads

o [FEL )] - [ R = i)
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with ¥ = % Zthl 7~2t7~32 The maximum likelihood estimator of Apa = (A2...\)’ then equals
Ar2 = Wy Ywh, (36)

with wy an m — 1 dimensional row vector and Wa an (m — 1) x (m — 1) dimensional matrix which are
such that (1}“}2 ) contains the m — 1 characteristic vectors that are associated with the m — 1 largest
roots of the characteristic polynomial in (35), see Kleibergen (2009) and Shanken and Zhou (2007).
We then proceed with computing the least squares estimator of B under Hp'3 :

—1
5 T G1t+X1,0 ! T G1t+X21,0\ (G1e+A1,0 !
B = Zt:l Rt (G2t+S\F,2) [Zt:l (Gzt+5\F,2) (é2t+5\F,2) :| ’ (37)

which provides the base for our four identification robust factor statistics, see Kleibergen (2009):

1. The factor Anderson-Rubin (FAR) statistic which is based on the Anderson-Rubin statistic, see
Anderson and Rubin (1949):

FAR(w0) = vy [R - BRI 7 [R- BRI (39)

AFR2 AF,2

. 5 1 T A 1 T Gie+21,0\ (G1etA1,0 ! ST T S I E TR
with R T Zt:l Rt’ QGG T Zt:l (é2t+5\F,2) (ézt+:\F,2) and % = T—k Zt:l [Rt B B(é2t+:\F,2)i|
_ A (T !/
[Rt - B (g;ﬁ;‘;o)] and whose large sample distribution is bounded by a x?(N —m) distributed
t 2
random variable when the sample size T' gets large.

2. The factor extension of Kleibergen’s (2002, 2005) Lagrange Multiplier statistic:

_ T o s 1pEs B e [k B
FKLM(AL0) = — 5ot [R—B(X;Z)} S1IB(B'S1B) 1 BS [R—B(;;Z)},
(XF,z) QGG(;F_’Z) ’ 7

(39)
whose large sample distribution is bounded by a y2(1) distributed random variable when the
sample size gets large.

3. The factor extension of Kleibergen’s (2005) J-statistic:
FIKLM(A10) = FAR(A1 ) — FKLM(A10), (40)

whose large sample distribution is bounded by a y?(N —m—1) distributed random variable when
the sample size gets large. This x2(N — m — 1) distributed random variable is independent of
the x2(1) distributed random variable which bounds the large sample distribution of the FKLM
statistic.

4. The factor extension of Moreira’s (2003) conditional likelihood ratio statistic:

FCLR(A10) = 1 [FKLM(A10) + FIKLM(A10) — r(Ar0)+
VEFKLM(X ) + FIKLM(AL0) + r(A\1.0))2 — 4r(A170)FJKLM(>\170)] o

A1)

with r(A1 ) the smallest root of the characteristic polynomial:

1Qoe, — BB =0. (42)

B,

ByWe are essentially estimating B1 —tn—1by if B = (bN

dimensional row vector.

), with By an (N — 1) x m dimensional matrix and by a 1 xm
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In large samples the distribution of the FCLR statistic is bounded by a random variable whose
distribution is conditional on the value of r(A1). The (bounding) critical values of the FCLR
statistic are therefore a function of r(\; ) and the independent x?(1) and x?(N —m — 1) large
sample distributions of the FKLM and FJKLM statistics. We obtain these critical values by
fixing r(A1 o) and simulating the FKLM and FJKLM statistics from their independent large
sample distributions to compute the FCLR statistic using the simulated values of the FKLM
and FJKLM statistics, see Kleibergen (2009).

The critical values that result from the bounding distributions for each of the four identification
robust factor statistics are such that these statistics are size correct when (Ag ... \.,) are well identified
so the associated values of 8 and Vrg constitute sizeable full rank matrices. When (Ag ... \;,) are not
well identified because of small or zero values of the associated values of 3 and Vg, the critical values
are such that the rejection frequencies of the identification robust factor statistics are smaller than
the size of the test. The maximal rejection frequencies of the identification robust factor statistics are
therefore equal to the size of the test which makes them size correct, see Kleibergen and Mavroeidis
(2009).

The identification robust factor statistics test different hypotheses. The FAR statistic tests the
joint hypothesis of factor pricing and A\; = A1 o: Hpar : E(R¢) = B(i;‘;) where g2 is to be estimated.
The hypothesis of factor pricing given that A\ = A1 is tested usingy the FJKLM statistic while the
FKLM and FCLR statistics both test Ho : Ay = A1 0.

We can use each of the four different statistics to construct a 95% confidence set for Ay by specifying
a grid of s different values for Aq, (/\io ... Al0). We then compute the statistics for each different
value of Aj ¢ in the grid. The 95% confidence set consists of all values of A; o for which the statistic is
below its 95% (conditional) critical value. In case that one of the elements of A\r is not well identified,
the 95% confidence sets is unbounded, see e.g. Dufour (1997).

The above discussion deals with testing one element of Ar so it assumes that A\r has more than one
element, m > 1. When A just consists of one element, g2 is not present so we do not conduct the
computations in (34)-(36). The expressions of the identification robust factor statistics then extend
to the case that there is just one observed factor when we remove A F2 and Goy + A p2 from (37)-(42).

The performance of the identification robust FKLM and FCLR statistics is similar to that of
t-statistics based on FM two pass or maximum likelihood estimators when the (’s and Vpg are
sizeable. The latter two, however, become unreliable when the 8’s and/or Vpg are quite small. The
identification robust factor statistics remain reliable in these cases. It is therefore important to use
them for computing confidence sets on the risk premia when the ’s and/or Vpg are quite small.
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